Repairable Systems Analysis Reference Example

From ReliaWiki
Revision as of 18:26, 28 September 2015 by Kate Racaza (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
RGA Reference Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at RGA examples and RGA reference examples.




Repairable Systems Analysis

This example validates the results for a repairable systems analysis in RGA.


Reference Case

Crow, L.H., Reliability Analysis for Complex Repairable Systems, Reliability and Biometry: Statistical Analysis of Lifelength, pg. 385, 1974.

For this example, the Power Law model parameters will be calculated.


Data

The following table shows the data.

System 1 System 2 System 3
4.3 0.1 8.4
4.4 5.6 32.4
10.2 18.6 44.7
23.5 19.5 48.4
23.8 24.2 50.6
26.4 26.7 73.6
74 45.1 98.7
77.1 45.8 112.2
92.1 72.7 129.8
197.2 75.7 136
98.6 195.8
120.1
161.8
180.6
190.8
Simulated Data for 3 Systems with End Time = 200 hours


Result

The book has the following results:

Beta = 0.615, Lambda = 0.461


Results in RGA

Since [math]\displaystyle{ \,\!S_{1}=S_{2}=S_{3}=0 }[/math] and [math]\displaystyle{ \,\!T_{1}=T_{2}=T_{3}=200 }[/math] then the maximum likelihood estimates of [math]\displaystyle{ \,\!\hat{\beta} }[/math] and [math]\displaystyle{ \,\!\hat{\lambda } }[/math] are given by:


[math]\displaystyle{ \begin{align} \hat{\beta} =&\frac{\underset{q=1}{\overset{K}{\mathop \sum }}N_{q}}{\underset{q=1}{\overset{K}{\mathop \sum }}\,\underset{i=1}{\overset{N_{q}}{\mathop \sum }}\ln \left ( \frac{T}{X_{iq}} \right )}\\ \\ =&0.6153 \end{align}\,\! }[/math]


[math]\displaystyle{ \begin{align} \hat{\lambda }=&\frac{{\underset{q=1}{\overset{K}{\mathop \sum }}N_{q}}}{KT^{\hat{\beta }}}\\ \\ =&0.4605 \end{align}\,\! }[/math]


The model parameters are:

Repairable SystemS SIAM Results.png