Mission Profile Example

From ReliaWiki
Revision as of 22:52, 3 February 2014 by Kate Racaza (talk | contribs)
Jump to navigation Jump to search
RGA Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at RGA examples and RGA reference examples.





This example appears in the Reliability Growth and Repairable System Analysis Reference book.


Consider the test-fix-find-test data set that was introduced in the Crow extended model chapter and is shown again in the table below. The total test time for this test is 400 hours. Note that for this example we assume one stopping point at the end of the test for the incorporation of the delayed fixes. Also, suppose that the data set represents a military system with:

  • Task 1 = firing a gun.
  • Task 2 = moving under environment E1.
  • Task 3 = moving under environment E2.

For every hour of operation, the operational profile states that the system operates in the E1 environment for 70% of the time and in the E2 environment for 30% of the time. In addition, for each hour of operation, the gun must be fired 10 times.


Test-Fix-Find-Test Data
[math]\displaystyle{ i\,\! }[/math] [math]\displaystyle{ {{X}_{i}}\,\! }[/math] Mode [math]\displaystyle{ i\,\! }[/math] [math]\displaystyle{ {{X}_{i}}\,\! }[/math] Mode
1 0.7 BC17 29 192.7 BD11
2 3.7 BC17 30 213 A
3 13.2 BC17 31 244.8 A
4 15 BD1 32 249 BD12
5 17.6 BC18 33 250.8 A
6 25.3 BD2 34 260.1 BD1
7 47.5 BD3 35 263.5 BD8
8 54 BD4 36 273.1 A
9 54.5 BC19 37 274.7 BD6
10 56.4 BD5 38 282.8 BC27
11 63.6 A 39 285 BD13
12 72.2 BD5 40 304 BD9
13 99.2 BC20 41 315.4 BD4
14 99.6 BD6 42 317.1 A
15 100.3 BD7 43 320.6 A
16 102.5 A 44 324.5 BD12
17 112 BD8 45 324.9 BD10
18 112.2 BC21 46 342 BD5
19 120.9 BD2 47 350.2 BD3
20 121.9 BC22 48 355.2 BC28
21 125.5 BD9 49 364.6 BD10
22 133.4 BD10 50 364.9 A
23 151 BC23 51 366.3 BD2
24 163 BC24 52 373 BD8
25 164.7 BD9 53 379.4 BD14
26 174.5 BC25 54 389 BD15
27 177.4 BD10 55 394.9 A
28 191.6 BC26 56 395.2 BD16

In general, it is difficult to manage an operational test so that these operational profiles are continuously met throughout the test. However, the operational mission profile methodology requires that these conditions be met on average at the convergence points. In practice, this almost always can be done with proper program and test management. The convergence points are set for the testing, often at interim assessment points. The process for controlling the convergence at these points involves monitoring a graph for each of the tasks.

The following table shows the expected and actual results for each of the operational mission profiles.

Expected and actual results for profiles 1, 2, 3
Profile 1(gun firings) Profile 2(E1) Profile 3(E2)
Time Expected Actual Expected Actual Expected Actual
5 50 0 3.5 5 1.5 0
10 100 0 7 10 3 0
15 150 0 10.5 15 4.5 0
20 200 0 14 20 6 0
25 250 100 17.5 25 7.5 0
30 300 150 21 30 9 0
35 350 400 24.5 30 10.5 5
40 400 600 28 30 12 10
45 450 600 31.5 30 13.5 15
50 500 600 35 30 15 20
55 550 800 38.5 35 16.5 20
60 600 800 42 40 18 20
65 650 800 45.5 45 19.5 20
70 700 800 49 50 21 20
75 750 800 52.5 55 22.5 20
80 800 900 56 55 24 25
85 850 950 59.5 55 25.5 30
90 900 1000 63 60 27 30
95 950 1000 66.5 65 28.5 30
100 1000 1000 70 70 30 30
105 1050 1000 73.5 70 31.5 35
... ... ... ... ... ...
... ... ... ... ... ...
355 3550 3440 248.5 259 106.5 96
360 3600 3690 252 264 108 96
365 3650 3690 255.5 269 109.5 96
370 3700 3850 259 274 111 96
375 3750 3850 262.5 279 112.5 96
380 3800 3850 266 280 114 100
385 3850 3850 269.5 280 115.5 105
390 3900 3850 273 280 117 110
395 3950 4000 276.5 280 118.5 115
400 4000 4000 280 280 120 120


The next figure shows a portion of the expected and actual results for mission profile 1, as entered in the RGA software.

Entering expected and actual results for profile 1 in the RGA software.


A graph exists for each of the three tasks in this example. Each graph has a line with the expected average as a function of hours, and the corresponding actual value. When the actual value for a task meets the expected value then it is a convergence for that task. A convergence point occurs when all of the tasks converge at the same time. At least three convergence points are required, one of which is the stopping point [math]\displaystyle{ T\,\! }[/math]. In our example, the total test time is 400 hours. The convergence points were chosen to be at 100, 250, 320 and 400 hours. The next figure shows the data sheet that contains the convergence points in the RGA software.

Specifying convergence points in the RGA software.


The testing profiles are managed so that at these times the actual operational test profile equals the expected values for the three tasks or falls within an acceptable range. The next graph shows the expected and actual gun firings.

Operational mission profile for gun firings.


While the next two graphs show the expected and actual time in environments E1 and E2, respectively.

Operational mission profile for time in environment E1.


Operational mission profile for time in environment E2.


The objective of having the convergence points is to be able to apply the Crow extended model directly in such a way that the projection and other key reliability growth parameters can be estimated in a valid fashion. To do this, grouped data is applied using the Crow extended model. For reliability growth assessments using grouped data, only the information between time points in the testing is used. In our application, these time points are the convergence points 100, 250, 320, and 400. The next figure shows all three mission profiles plotted in the same graph, together with the convergence points.

Combined mission profile graph with convergence points.


The following table gives the grouped data input corresponding to the original data set.

Grouped data at convergence points 100, 250, 320 and 400 hours
Number at Event Time to Event Classification Mode Number at Event Time to Event Classification Mode
3 100 BC 17 1 250 BC 26
1 100 BD 1 1 250 BD 11
1 100 BC 18 1 250 BD 12
1 100 BD 2 3 320 A
1 100 BD 3 1 320 BD 1
1 100 BD 4 1 320 BD 8
1 100 BC 19 1 320 BD 6
2 100 BD 5 1 320 BC 27
1 100 A 1 320 BD 13
1 100 BC 20 1 320 BD 9
1 100 BD 6 1 320 BD 4
1 250 BD 7 3 400 A
3 250 A 1 400 BD 12
1 250 BD 8 2 400 BD 10
1 250 BC 21 1 400 BD 5
1 250 BD 2 1 400 BD 3
1 250 BC 22 1 400 BC 28
2 250 BD 9 1 400 BD 2
2 250 BD 10 1 400 BD 8
1 250 BC 23 1 400 BD 14
1 250 BC 24 1 400 BD 15
1 250 BC 25 1 400 BD 16


The parameters of the Crow extended model for grouped data are then estimated, as explained in the Grouped Data section of the Crow Extended chapter. The following table shows the effectiveness factors (EFs) for the BD modes.

Effectiveness Factors for delayed fixes
Mode Effectiveness Factor
1 0.67
2 0.72
3 0.77
4 0.77
5 0.87
6 0.92
7 0.50
8 0.85
9 0.89
10 0.74
11 0.70
12 0.63
13 0.64
14 0.72
15 0.69
16 0.46


Using the failure times data sheet shown next, we can analyze this data set based on a specified mission profile. This will group the failure times data into groups based on the convergence points that have already been specified when constructing the mission profile.

Failure times data.


A new data sheet with the grouped data is created, as shown in the figure below and the calculated results based on the grouped data are as follows:

Grouped data set prepared based on the mission profile convergence points.


The following plot shows the instantaneous, demonstrated, projected and growth potential MTBF for the grouped data, based the mission profile grouping with intervals at the specified convergence points of the mission profile.

Instantaneous, demonstrated, projected and growth potential MTBF for grouped data.