|
|
Line 134: |
Line 134: |
|
| |
|
|
| |
|
| *The 95% two-sided confidence intervals are: for <math>\,\!\sigma<\math> , it is [0.83, 1.32]; for <math>\,\!\beta _{0}</math> it is [21.6, 33.4]; for <math>\,\!beta _{1}</math> it is [-5.46, -3.11]. | | *The 95% two-sided confidence intervals are: for <math>\,\!\sigma<\math> , it is [0.83, 1.32]; for <math>\,\!\beta _{0}</math> it is [21.6, 33.4]; for <math>\,\!\beta _{1}</math> it is [-5.46, -3.11]. |
|
| |
|
|
| |
|
|
| |
|
| {{Reference_Example_Heading4|ALTA}} | | {{Reference_Example_Heading4|ALTA}} |
Revision as of 22:31, 10 June 2014
ALTA_Reference_Examples_Banner.png
This example validates the IPL life stress relationship with a lognormal distribution.
Reference Case
The data set is from Example 19.10 on page 504 in book Statistical Methods for Reliability Data by Dr. Meeker and Dr. Escobar, John Wiley & Sons, 1998.
Data
A Mylar-Polyurethane Insulating structure was tested under several different voltage settings. The test data is given in the table shown next.
Time Failed (Hr)
|
Voltage (kV)
|
15 |
219
|
16 |
219
|
36 |
219
|
50 |
219
|
55 |
219
|
95 |
219
|
122 |
219
|
129 |
219
|
625 |
219
|
700 |
219
|
49 |
157.1
|
99 |
157.1
|
154.5 |
157.1
|
180 |
157.1
|
291 |
157.1
|
447 |
157.1
|
510 |
157.1
|
600 |
157.1
|
1656 |
157.1
|
1721 |
157.1
|
188 |
122.4
|
297 |
122.4
|
405 |
122.4
|
744 |
122.4
|
1218 |
122.4
|
1340 |
122.4
|
1715 |
122.4
|
3382 |
122.4
|
606 |
100.3
|
1012 |
100.3
|
2520 |
100.3
|
2610 |
100.3
|
3988 |
100.3
|
4100 |
100.3
|
5025 |
100.3
|
6842 |
100.3
|
Result
The following function is used for the Ln-Mean [math]\displaystyle{ \,\!\mu {}' }[/math]:
- [math]\displaystyle{ \,\!\mu {}'=\beta _{0}+\beta _{1}\times ln\left ( V \right ) }[/math]
where V is the voltage and its natural log transform is used in the above life stress relation.
This function can be written in the following way:
- [math]\displaystyle{ \,\!e^{\mu {}'}=e^{\alpha _{0}+\alpha _{1}log\left ( V \right )} }[/math]
The above equation is the general log-linear model in ALTA. In ALTA, the coefficients are denoted by [math]\displaystyle{ \,\!\alpha _{i} }[/math].
In fact, the above model also can be expressed using the traditional IPL (inverse power law) model:
- [math]\displaystyle{ \,\!e^{\mu {}'}=\frac{1}{K\cdot V^{n}} }[/math]
where [math]\displaystyle{ \,\!K=e^{-\alpha _{0}} }[/math] and [math]\displaystyle{ \,\!n=-\alpha _{1} }[/math].
In the book, the following results are provided:
- ML estimations for the model parameters are: [math]\displaystyle{ \,\!\sigma =1.05 }[/math] , [math]\displaystyle{ \,\!\beta _{0}=27.5 }[/math] and [math]\displaystyle{ \,\!\beta _{1}=-4.29 }[/math].
- The standard deviation of each parameter are: [math]\displaystyle{ \,\!std\left ( \sigma \right )=0.12 }[/math] , [math]\displaystyle{ \,\!std\left ( \beta _{0} \right )=3.0 }[/math] and [math]\displaystyle{ \,\!std\left ( \beta _{1} \right )=0.6 }[/math].
- Therefore, their variances are: [math]\displaystyle{ \,\!Var\left ( \sigma \right )=0.0144 }[/math] , [math]\displaystyle{ \,\!Var\left ( \beta _{0} \right )=9 }[/math] and [math]\displaystyle{ \,\!Var\left ( \beta _{1} \right )=0.36 }[/math].
- The log-likelihood value is -271.4.
- The 95% two-sided confidence intervals are: for [math]\displaystyle{ \,\!\sigma\lt \math\gt , it is [0.83, 1.32]; for \lt math\gt \,\!\beta _{0} }[/math] it is [21.6, 33.4]; for [math]\displaystyle{ \,\!\beta _{1} }[/math] it is [-5.46, -3.11].
Results in ALTA