Crow Extended Confidence Bounds: Difference between revisions
Lisa Hacker (talk | contribs) No edit summary |
Lisa Hacker (talk | contribs) No edit summary |
||
Line 2: | Line 2: | ||
In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for the [[Crow Extended]] model when applied to developmental testing data. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow. | In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for the [[Crow Extended]] model when applied to developmental testing data. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow. | ||
===Bounds on Demonstrated Failure Intensity=== | ===Bounds on Demonstrated Failure Intensity=== <!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
If there are no BC failure modes, the demonstrated failure intensity is <math>{{\widehat{\lambda }}_{D}}(T)=\tfrac{{{N}_{A}}+{{N}_{BD}}}{T}</math> . Thus: | If there are no BC failure modes, the demonstrated failure intensity is <math>{{\widehat{\lambda }}_{D}}(T)=\tfrac{{{N}_{A}}+{{N}_{BD}}}{T}</math> . Thus: | ||
Line 53: | Line 53: | ||
===Bounds on Demonstrated MTBF=== | ===Bounds on Demonstrated MTBF=== <!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Line 70: | Line 70: | ||
where <math>{{[{{\lambda }_{D}}(T)]}_{L}}</math> and <math>{{[{{\lambda }_{D}}(T)]}_{U}}</math> can be obtained from Eqn. (DCR). | where <math>{{[{{\lambda }_{D}}(T)]}_{L}}</math> and <math>{{[{{\lambda }_{D}}(T)]}_{U}}</math> can be obtained from Eqn. (DCR). | ||
<br> | <br> | ||
===Bounds on Projected Failure Intensity=== | ===Bounds on Projected Failure Intensity===<!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
The projected failure intensity <math>{{\lambda }_{P}}(T)</math> must be positive, thus <math>\ln {{\lambda }_{P}}(T)</math> is approximately treated as being normally distributed as well: | The projected failure intensity <math>{{\lambda }_{P}}(T)</math> must be positive, thus <math>\ln {{\lambda }_{P}}(T)</math> is approximately treated as being normally distributed as well: | ||
Line 111: | Line 111: | ||
===Bounds on Projected MTBF=== | ===Bounds on Projected MTBF===<!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Line 128: | Line 128: | ||
<math>{{[{{\lambda }_{P}}(T)]}_{U}}</math> and <math>{{[{{\lambda }_{P}}(T)]}_{L}}</math> can be obtained from Eqn. (PCR). | <math>{{[{{\lambda }_{P}}(T)]}_{U}}</math> and <math>{{[{{\lambda }_{P}}(T)]}_{L}}</math> can be obtained from Eqn. (PCR). | ||
<br> | <br> | ||
===Bounds on Growth Potential Failure Intensity=== | ===Bounds on Growth Potential Failure Intensity===<!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | ||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
If there are no BC failure modes, the growth potential failure intensity is <math>{{\widehat{r}}_{GP}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}</math> . | If there are no BC failure modes, the growth potential failure intensity is <math>{{\widehat{r}}_{GP}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}</math> . | ||
Line 159: | Line 159: | ||
<br> | <br> | ||
===Bounds on Growth Potential MTBF===<!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | |||
===Bounds on Growth Potential MTBF=== | |||
====Fisher Matrix Bounds==== | ====Fisher Matrix Bounds==== | ||
::<math>\begin{align} | ::<math>\begin{align} |
Revision as of 05:55, 25 August 2012
In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for the Crow Extended model when applied to developmental testing data. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow.
Bounds on Demonstrated Failure Intensity
Fisher Matrix Bounds
If there are no BC failure modes, the demonstrated failure intensity is [math]\displaystyle{ {{\widehat{\lambda }}_{D}}(T)=\tfrac{{{N}_{A}}+{{N}_{BD}}}{T} }[/math] . Thus:
- [math]\displaystyle{ Var({{\hat{\lambda }}_{D}}(t))=\frac{{{N}_{A}}}{{{T}^{2}}}+\frac{{{N}_{BD}}}{{{T}^{2}}}=\frac{{{\lambda }_{D}}(t)}{T} }[/math]
- and:
- [math]\displaystyle{ \sqrt{T}\left( \frac{{{{\hat{\lambda }}}_{D}}(T)-{{\lambda }_{D}}(T)}{\sqrt{{{\lambda }_{D}}(T)}} \right)\sim N(0,1) }[/math]
- [math]\displaystyle{ {{\lambda }_{D}}(T)={{\hat{\lambda }}_{D}}(T)+\frac{{{C}^{2}}}{2}\pm \sqrt{{{{\hat{\lambda }}}_{D}}(T){{C}^{2}}+\frac{{{C}^{4}}}{4}} }[/math]
where [math]\displaystyle{ C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}} }[/math] .
If there are BC failure modes, the demonstrated failure intensity, [math]\displaystyle{ {{\widehat{\lambda }}_{D}}(T)={{\widehat{\lambda }}_{CA}} }[/math] , is actually the instantaneous failure intensity based on all of the data. [math]\displaystyle{ {{\lambda }_{CA}}(T) }[/math] must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{CA}}(T) }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{CA}}(T)-\ln {{\lambda }_{CA}}(T)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{CA}}(T)})}\sim N(0,1) }[/math]
The approximate confidence bounds on the instantaneous failure intensity are then estimated from:
- [math]\displaystyle{ CB={{\hat{\lambda }}_{CA}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{CA}}(T))}/{{{\hat{\lambda }}}_{i}}(T)}} }[/math]
where [math]\displaystyle{ {{\lambda }_{CA}}(t)=\lambda \beta {{T}^{\beta -1}} }[/math] .
- [math]\displaystyle{ \begin{align} & Var({{{\hat{\lambda }}}_{CA}}(T))= & {{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & & +2\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align} }[/math]
The variance calculation is the same as described in Chapter 5.
Crow Bounds
If there are no BC failure modes then:
- [math]\displaystyle{ \begin{align} & {{[{{\lambda }_{D}}(T)]}_{l}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,1-\alpha /2)}^{2}}{2N} \\ & {{[{{\lambda }_{D}}(T)]}_{u}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,\alpha /2)}^{2}}{2N} \end{align} }[/math]
where [math]\displaystyle{ {{\widehat{\lambda }}_{D}}(T)={{\widehat{\lambda }}_{CA}} }[/math] .
If there are BC modes then the confidence bounds on the demonstrated failure intensity are calculated as presented in Chapter 5.
Bounds on Demonstrated MTBF
Fisher Matrix Bounds
- [math]\displaystyle{ \begin{align} & MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\ & MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}} \end{align} }[/math]
where [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{L}} }[/math] and [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{U}} }[/math] can be obtained from Eqn. (DR).
Crow Bounds
- [math]\displaystyle{ \begin{align} & MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\ & MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}} \end{align} }[/math]
where [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{L}} }[/math] and [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{U}} }[/math] can be obtained from Eqn. (DCR).
Bounds on Projected Failure Intensity
Fisher Matrix Bounds
The projected failure intensity [math]\displaystyle{ {{\lambda }_{P}}(T) }[/math] must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{P}}(T) }[/math] is approximately treated as being normally distributed as well:
- [math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{P}}(T)-\ln {{\lambda }_{P}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{P}}(T)})}\sim N(0,1) }[/math]
- [math]\displaystyle{ CB={{\hat{\lambda }}_{P}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{P}}(T))}/{{{\hat{\lambda }}}_{P}}(T)}} }[/math]
where:
- • [math]\displaystyle{ {{\hat{\lambda }}_{P}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}+\overline{d}\tfrac{M}{T}\bar{\beta } }[/math] when there are no BC modes.
- • [math]\displaystyle{ {{\hat{\lambda }}_{P}}(T)={{\widehat{\lambda }}_{EM}}={{\widehat{\lambda }}_{CA}}-{{\widehat{\lambda }}_{BD}}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}+\overline{d}\widehat{h}(T|BD) }[/math] when there are BC modes.
- • [math]\displaystyle{ {{N}_{i}} }[/math] is the total failure number of the [math]\displaystyle{ {{i}^{th}} }[/math] distinct BD mode.
You can then get:
- [math]\displaystyle{ Var({{\lambda }_{P}}(T))\approx Var({{\hat{\gamma }}_{GP}})+\mu _{d}^{2}Var(h(T))\approx \frac{{{{\hat{r}}}_{GP}}}{T}+\mu _{d}^{2}Var(h(T)) }[/math]
- where:
- [math]\displaystyle{ \begin{align} & \hat{h}(T)= & \frac{M}{T}\bar{\beta } \\ & Var(\hat{h}(T))= & {{(\frac{M}{T})}^{2}}Var(\bar{\beta })={{(\frac{M}{T})}^{2}}{{(\frac{M}{M-1})}^{2}}Var(\hat{\beta })=\frac{{{M}^{4}}}{{{T}^{2}}{{(M-1)}^{2}}}Var(\hat{\beta }) \end{align} }[/math]
The [math]\displaystyle{ Var(\hat{\beta }) }[/math] can be obtained from Fisher Matrix based on [math]\displaystyle{ M }[/math] distinct BD modes.
Crow Bounds
- [math]\displaystyle{ \begin{align} & {{[{{\lambda }_{P}}(T)]}_{L}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot {{C}^{2}}+\frac{{{C}^{4}}}{4}} \\ & {{[{{\lambda }_{P}}(T)]}_{U}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot \ \,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \end{align} }[/math]
where [math]\displaystyle{ C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}} }[/math] .
Bounds on Projected MTBF
Fisher Matrix Bounds
- [math]\displaystyle{ \begin{align} & MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\ & MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}} \end{align} }[/math]
[math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{U}} }[/math] and [math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{L}} }[/math] can be obtained from Eqn. (extended25).
Crow Bounds
- [math]\displaystyle{ \begin{align} & MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\ & MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}} \end{align} }[/math]
[math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{U}} }[/math] and [math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{L}} }[/math] can be obtained from Eqn. (PCR).
Bounds on Growth Potential Failure Intensity
Fisher Matrix Bounds
If there are no BC failure modes, the growth potential failure intensity is [math]\displaystyle{ {{\widehat{r}}_{GP}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T} }[/math] .
- Then:
- [math]\displaystyle{ \begin{align} & Var({{\widehat{r}}_{GP}})= & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,{{(1-{{d}_{i}})}^{2}}\frac{{{N}_{i}}}{T} \right] \\ & \le & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,(1-{{d}_{i}})\frac{{{N}_{i}}}{T} \right] \\ & = & \frac{{{r}_{GP}}}{T} \end{align} }[/math]
If there are BC failure modes, the growth potential failure intensity is [math]\displaystyle{ {{\widehat{r}}_{GP}}(T)={{\widehat{\lambda }}_{CA}}-{{\widehat{\lambda }}_{BD}}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}, }[/math] [math]\displaystyle{ Var({{\widehat{r}}_{GP}})\approx \tfrac{{{r}_{GP}}}{T} }[/math] . Therefore:
- [math]\displaystyle{ \sqrt{T}\left( \frac{{{{\hat{r}}}_{GP}}-{{r}_{GP}}}{\sqrt{{{r}_{GP}}}} \right)\sim N(0,1) }[/math]
The confidence bounds on the growth potential failure intensity are as follows:
- [math]\displaystyle{ \begin{align} & {{r}_{L}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \\ & {{r}_{U}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \end{align} }[/math]
where [math]\displaystyle{ C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}} }[/math] .
Crow Bounds
The Crow bounds for the growth potential failure intensity are the same as the Fisher Matrix bounds.
Bounds on Growth Potential MTBF
Fisher Matrix Bounds
- [math]\displaystyle{ \begin{align} & MTB{{F}_{G{{P}_{L}}}}= & \frac{1}{{{r}_{U}}} \\ & MTB{{F}_{G{{P}_{U}}}}= & \frac{1}{{{r}_{L}}} \end{align} }[/math]
where [math]\displaystyle{ {{r}_{U}} }[/math] and [math]\displaystyle{ {{r}_{L}} }[/math] can be obtained from Eqn. (GPR).
Crow Bounds
The Crow bounds for the growth potential MTBF are the same as the Fisher Matrix bounds.