Inverse Power Law (IPL)-Lognormal Model: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 123: | Line 123: | ||
In the book, the following results are provided: | In the book, the following results are provided: | ||
*ML estimations for the model parameters are: <math>\,\!\sigma =1.05</math> , <math>\,\!\beta _{0}=27.5</math> and <math>\,\!\beta _{1}=-4.29</math> . | *ML estimations for the model parameters are: <math>\,\!\sigma =1.05</math> , <math>\,\!\beta _{0}=27.5</math> and <math>\,\!\beta _{1}=-4.29</math>. | ||
*The standard deviation of each parameter are: <math>\,\!std\left ( \sigma \right )=0.12</math> , <math>\,\!std\left ( \beta _{0} \right )=3.0</math> and <math>\,\!std\left ( \beta _{1} \right )=0.6</math> . Therefore, their variances are: <math>\,\!</math> , <math>\,\!</math> | *The standard deviation of each parameter are: <math>\,\!std\left ( \sigma \right )=0.12</math> , <math>\,\!std\left ( \beta _{0} \right )=3.0</math> and <math>\,\!std\left ( \beta _{1} \right )=0.6</math>. Therefore, their variances are: <math>\,\!Var\left ( \sigma \right )=0.0144</math> , <math>\,\!Var\left ( \beta _{0} \right )=9</math> and <math>\,\!Var\left ( \beta _{1} \right )=0.36</math>. | ||
*The log-likelihood value is -271.4. | *The log-likelihood value is -271.4. |
Revision as of 22:25, 10 June 2014
ALTA_Reference_Examples_Banner.png