Repairable Systems Analysis Reference Example: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{Reference Example|{{Banner RGA Reference_Examples}}}}
{{Reference Example|{{Banner RGA Reference_Examples}}|Repairable Systems Analysis}}
This example compares the results for a repairable systems analysis.  
This example validates the results for a repairable systems analysis in RGA.  




Line 6: Line 6:


Crow, L.H., ''Reliability Analysis for Complex Repairable Systems'', Reliability and Biometry: Statistical Analysis of Lifelength, pg. 385, 1974.
Crow, L.H., ''Reliability Analysis for Complex Repairable Systems'', Reliability and Biometry: Statistical Analysis of Lifelength, pg. 385, 1974.
For this example, the Power Law model parameters will be calculated.




Line 71: Line 73:


::<math>\begin{align}
::<math>\begin{align}
\hat{\lambda }=&\frac{{\underset{i=1}{\overset{N}{\mathop \sum }}N_{q}}}{KT^{\hat{\beta }}}\\
\hat{\lambda }=&\frac{{\underset{q=1}{\overset{K}{\mathop \sum }}N_{q}}}{KT^{\hat{\beta }}}\\
\\
\\
=&0.4605
=&0.4605

Latest revision as of 18:26, 28 September 2015

RGA Reference Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at RGA examples and RGA reference examples.




Repairable Systems Analysis

This example validates the results for a repairable systems analysis in RGA.


Reference Case

Crow, L.H., Reliability Analysis for Complex Repairable Systems, Reliability and Biometry: Statistical Analysis of Lifelength, pg. 385, 1974.

For this example, the Power Law model parameters will be calculated.


Data

The following table shows the data.

System 1 System 2 System 3
4.3 0.1 8.4
4.4 5.6 32.4
10.2 18.6 44.7
23.5 19.5 48.4
23.8 24.2 50.6
26.4 26.7 73.6
74 45.1 98.7
77.1 45.8 112.2
92.1 72.7 129.8
197.2 75.7 136
98.6 195.8
120.1
161.8
180.6
190.8
Simulated Data for 3 Systems with End Time = 200 hours


Result

The book has the following results:

Beta = 0.615, Lambda = 0.461


Results in RGA

Since [math]\displaystyle{ \,\!S_{1}=S_{2}=S_{3}=0 }[/math] and [math]\displaystyle{ \,\!T_{1}=T_{2}=T_{3}=200 }[/math] then the maximum likelihood estimates of [math]\displaystyle{ \,\!\hat{\beta} }[/math] and [math]\displaystyle{ \,\!\hat{\lambda } }[/math] are given by:


[math]\displaystyle{ \begin{align} \hat{\beta} =&\frac{\underset{q=1}{\overset{K}{\mathop \sum }}N_{q}}{\underset{q=1}{\overset{K}{\mathop \sum }}\,\underset{i=1}{\overset{N_{q}}{\mathop \sum }}\ln \left ( \frac{T}{X_{iq}} \right )}\\ \\ =&0.6153 \end{align}\,\! }[/math]


[math]\displaystyle{ \begin{align} \hat{\lambda }=&\frac{{\underset{q=1}{\overset{K}{\mathop \sum }}N_{q}}}{KT^{\hat{\beta }}}\\ \\ =&0.4605 \end{align}\,\! }[/math]


The model parameters are:

Repairable SystemS SIAM Results.png