Crow Extended Confidence Bounds: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
mNo edit summary
Line 6: Line 6:
If there are no BC failure modes, the demonstrated failure intensity is
If there are no BC failure modes, the demonstrated failure intensity is


::<math>{{\widehat{\lambda }}_{D}}(T)=\tfrac{{{N}_{A}}+{{N}_{BD}}}{T}\,\!</math>.  
:<math>{{\widehat{\lambda }}_{D}}(T)=\tfrac{{{N}_{A}}+{{N}_{BD}}}{T}\,\!</math>.  


:Thus:
Thus:


::<math>Var({{\hat{\lambda }}_{D}}(t))=\frac{{{N}_{A}}}{{{T}^{2}}}+\frac{{{N}_{BD}}}{{{T}^{2}}}=\frac{{{\lambda }_{D}}(t)}{T}\,\!</math>
:<math>Var({{\hat{\lambda }}_{D}}(t))=\frac{{{N}_{A}}}{{{T}^{2}}}+\frac{{{N}_{BD}}}{{{T}^{2}}}=\frac{{{\lambda }_{D}}(t)}{T}\,\!</math>


:and:  
and:  


::<math>\sqrt{T}\left( \frac{{{{\hat{\lambda }}}_{D}}(T)-{{\lambda }_{D}}(T)}{\sqrt{{{\lambda }_{D}}(T)}} \right)\sim N(0,1)\,\!</math>
:<math>\sqrt{T}\left( \frac{{{{\hat{\lambda }}}_{D}}(T)-{{\lambda }_{D}}(T)}{\sqrt{{{\lambda }_{D}}(T)}} \right)\sim N(0,1)\,\!</math>


 
:<math>{{\lambda }_{D}}(T)={{\hat{\lambda }}_{D}}(T)+\frac{{{C}^{2}}}{2}\pm \sqrt{{{{\hat{\lambda }}}_{D}}(T){{C}^{2}}+\frac{{{C}^{4}}}{4}}\,\!</math>
::<math>{{\lambda }_{D}}(T)={{\hat{\lambda }}_{D}}(T)+\frac{{{C}^{2}}}{2}\pm \sqrt{{{{\hat{\lambda }}}_{D}}(T){{C}^{2}}+\frac{{{C}^{4}}}{4}}\,\!</math>


where <math>C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}}\,\!</math>.
where <math>C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}}\,\!</math>.
Line 23: Line 22:
If there are BC failure modes, the demonstrated failure intensity, <math>{{\widehat{\lambda }}_{D}}(T)={{\widehat{\lambda }}_{CA}}\,\!</math>, is actually the instantaneous failure intensity based on all of the data. <math>{{\lambda }_{CA}}(T)\,\!</math> must be positive; thus, <math>\ln {{\lambda }_{CA}}(T)\,\!</math> is approximately treated as being normally distributed.  
If there are BC failure modes, the demonstrated failure intensity, <math>{{\widehat{\lambda }}_{D}}(T)={{\widehat{\lambda }}_{CA}}\,\!</math>, is actually the instantaneous failure intensity based on all of the data. <math>{{\lambda }_{CA}}(T)\,\!</math> must be positive; thus, <math>\ln {{\lambda }_{CA}}(T)\,\!</math> is approximately treated as being normally distributed.  


::<math>\frac{\ln {{{\hat{\lambda }}}_{CA}}(T)-\ln {{\lambda }_{CA}}(T)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{CA}}(T)})}\sim N(0,1)\,\!</math>
:<math>\frac{\ln {{{\hat{\lambda }}}_{CA}}(T)-\ln {{\lambda }_{CA}}(T)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{CA}}(T)})}\sim N(0,1)\,\!</math>


The approximate confidence bounds on the instantaneous failure intensity are then estimated from:  
The approximate confidence bounds on the instantaneous failure intensity are then estimated from:  


::<math>CB={{\hat{\lambda }}_{CA}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{CA}}(T))}/{{{\hat{\lambda }}}_{i}}(T)}}\,\!</math>
:<math>CB={{\hat{\lambda }}_{CA}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{CA}}(T))}/{{{\hat{\lambda }}}_{i}}(T)}}\,\!</math>
 


where <math>{{\lambda }_{CA}}(t)=\lambda \beta {{T}^{\beta -1}}\,\!</math>.  
where <math>{{\lambda }_{CA}}(t)=\lambda \beta {{T}^{\beta -1}}\,\!</math>.  


::<math>\begin{align}
:<math>\begin{align}
   Var({{{\hat{\lambda }}}_{CA}}(T))= & {{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   Var({{{\hat{\lambda }}}_{CA}}(T))= & {{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\  
   & +2\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })   
   & +2\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })   
Line 42: Line 40:
If there are no BC failure modes then:
If there are no BC failure modes then:


::<math>\begin{align}
:<math>\begin{align}
   {{[{{\lambda }_{D}}(T)]}_{l}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,1-\alpha /2)}^{2}}{2N} \\  
   {{[{{\lambda }_{D}}(T)]}_{l}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,1-\alpha /2)}^{2}}{2N} \\  
   {{[{{\lambda }_{D}}(T)]}_{u}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,\alpha /2)}^{2}}{2N}   
   {{[{{\lambda }_{D}}(T)]}_{u}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,\alpha /2)}^{2}}{2N}   
Line 53: Line 51:
===Bounds on Demonstrated MTBF=== <!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
===Bounds on Demonstrated MTBF=== <!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
====Fisher Matrix Bounds====
====Fisher Matrix Bounds====
::<math>\begin{align}
:<math>\begin{align}
   & MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\  
   & MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\  
  & MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}}   
  & MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}}   
Line 61: Line 59:


====Crow Bounds====
====Crow Bounds====
::<math>\begin{align}
:<math>\begin{align}
   MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\  
   MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\  
   MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}}   
   MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}}   
Line 72: Line 70:
The projected failure intensity <math>{{\lambda }_{P}}(T)\,\!</math> must be positive; thus, <math>\ln {{\lambda }_{P}}(T)\,\!</math> is approximately treated as being normally distributed as well:  
The projected failure intensity <math>{{\lambda }_{P}}(T)\,\!</math> must be positive; thus, <math>\ln {{\lambda }_{P}}(T)\,\!</math> is approximately treated as being normally distributed as well:  


::<math>\frac{\ln {{{\hat{\lambda }}}_{P}}(T)-\ln {{\lambda }_{P}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{P}}(T)})}\sim N(0,1)\,\!</math>
:<math>\frac{\ln {{{\hat{\lambda }}}_{P}}(T)-\ln {{\lambda }_{P}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{P}}(T)})}\sim N(0,1)\,\!</math>
 
 
::<math>CB={{\hat{\lambda }}_{P}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{P}}(T))}/{{{\hat{\lambda }}}_{P}}(T)}}\,\!</math>


:<math>CB={{\hat{\lambda }}_{P}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{P}}(T))}/{{{\hat{\lambda }}}_{P}}(T)}}\,\!</math>


where:
where:
Line 86: Line 82:
You can then get:  
You can then get:  


::<math>Var({{\lambda }_{P}}(T))\approx Var({{\hat{\gamma }}_{GP}})+\mu _{d}^{2}Var(h(T))\approx \frac{{{{\hat{r}}}_{GP}}}{T}+\mu _{d}^{2}Var(h(T))\,\!</math>
:<math>Var({{\lambda }_{P}}(T))\approx Var({{\hat{\gamma }}_{GP}})+\mu _{d}^{2}Var(h(T))\approx \frac{{{{\hat{r}}}_{GP}}}{T}+\mu _{d}^{2}Var(h(T))\,\!</math>


:where:  
where:


::<math>\begin{align}
:<math>\begin{align}
   \hat{h}(T)= & \frac{M}{T}\bar{\beta } \\  
   \hat{h}(T)= & \frac{M}{T}\bar{\beta } \\  
   Var(\hat{h}(T))= & {{(\frac{M}{T})}^{2}}Var(\bar{\beta })={{(\frac{M}{T})}^{2}}{{(\frac{M}{M-1})}^{2}}Var(\hat{\beta })=\frac{{{M}^{4}}}{{{T}^{2}}{{(M-1)}^{2}}}Var(\hat{\beta })   
   Var(\hat{h}(T))= & {{(\frac{M}{T})}^{2}}Var(\bar{\beta })={{(\frac{M}{T})}^{2}}{{(\frac{M}{M-1})}^{2}}Var(\hat{\beta })=\frac{{{M}^{4}}}{{{T}^{2}}{{(M-1)}^{2}}}Var(\hat{\beta })   
Line 98: Line 94:


====Crow Bounds====
====Crow Bounds====
::<math>\begin{align}
:<math>\begin{align}
   {{[{{\lambda }_{P}}(T)]}_{L}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot {{C}^{2}}+\frac{{{C}^{4}}}{4}} \\  
   {{[{{\lambda }_{P}}(T)]}_{L}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot {{C}^{2}}+\frac{{{C}^{4}}}{4}} \\  
   {{[{{\lambda }_{P}}(T)]}_{U}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot \ \,{{C}^{2}}+\frac{{{C}^{4}}}{4}}   
   {{[{{\lambda }_{P}}(T)]}_{U}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot \ \,{{C}^{2}}+\frac{{{C}^{4}}}{4}}   
Line 107: Line 103:
===Bounds on Projected MTBF===<!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
===Bounds on Projected MTBF===<!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
====Fisher Matrix Bounds====
====Fisher Matrix Bounds====
::<math>\begin{align}
:<math>\begin{align}
   MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\  
   MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\  
   MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}}   
   MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}}   
Line 115: Line 111:


====Crow Bounds====
====Crow Bounds====
::<math>\begin{align}
:<math>\begin{align}
   MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\  
   MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\  
   MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}}   
   MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}}   
Line 126: Line 122:
If there are no BC failure modes, the growth potential failure intensity is  
If there are no BC failure modes, the growth potential failure intensity is  


::<math>{{\widehat{r}}_{GP}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}\,\!</math>.  
:<math>{{\widehat{r}}_{GP}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}\,\!</math>.  


:Then:
Then:


::<math>\begin{align}
:<math>\begin{align}
   Var({{\widehat{r}}_{GP}})= & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,{{(1-{{d}_{i}})}^{2}}\frac{{{N}_{i}}}{T} \right] \\  
   Var({{\widehat{r}}_{GP}})= & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,{{(1-{{d}_{i}})}^{2}}\frac{{{N}_{i}}}{T} \right] \\  
   \le  & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,(1-{{d}_{i}})\frac{{{N}_{i}}}{T} \right] \\  
   \le  & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,(1-{{d}_{i}})\frac{{{N}_{i}}}{T} \right] \\  
Line 138: Line 134:
If there are BC failure modes, the growth potential failure intensity is
If there are BC failure modes, the growth potential failure intensity is


::<math>{{\widehat{r}}_{GP}}(T)={{\widehat{\lambda }}_{CA}}-{{\widehat{\lambda }}_{BD}}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T},\,\!</math> <math>Var({{\widehat{r}}_{GP}})\approx \tfrac{{{r}_{GP}}}{T}\,\!</math>.  
:<math>{{\widehat{r}}_{GP}}(T)={{\widehat{\lambda }}_{CA}}-{{\widehat{\lambda }}_{BD}}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T},\,\!</math> <math>Var({{\widehat{r}}_{GP}})\approx \tfrac{{{r}_{GP}}}{T}\,\!</math>.  


:Therefore:  
Therefore:  


::<math>\sqrt{T}\left( \frac{{{{\hat{r}}}_{GP}}-{{r}_{GP}}}{\sqrt{{{r}_{GP}}}} \right)\sim N(0,1)\,\!</math>
:<math>\sqrt{T}\left( \frac{{{{\hat{r}}}_{GP}}-{{r}_{GP}}}{\sqrt{{{r}_{GP}}}} \right)\sim N(0,1)\,\!</math>


The confidence bounds on the growth potential failure intensity are as follows:  
The confidence bounds on the growth potential failure intensity are as follows:  


::<math>\begin{align}
:<math>\begin{align}
   {{r}_{L}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \\  
   {{r}_{L}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \\  
   {{r}_{U}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}}   
   {{r}_{U}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}}   
Line 158: Line 154:
===Bounds on Growth Potential MTBF===<!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
===Bounds on Growth Potential MTBF===<!-- THIS SECTION HEADER IS LINKED FROM: Crow Extended. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
====Fisher Matrix Bounds====
====Fisher Matrix Bounds====
::<math>\begin{align}
:<math>\begin{align}
   MTB{{F}_{G{{P}_{L}}}}= & \frac{1}{{{r}_{U}}} \\  
   MTB{{F}_{G{{P}_{L}}}}= & \frac{1}{{{r}_{U}}} \\  
   MTB{{F}_{G{{P}_{U}}}}= & \frac{1}{{{r}_{L}}}   
   MTB{{F}_{G{{P}_{U}}}}= & \frac{1}{{{r}_{L}}}   

Revision as of 17:14, 20 June 2014

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/reliability_growth_and_repairable_system_analysis


RGAbox.png

Appendix D  
Crow Extended Confidence Bounds  


In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for the Crow extended model when applied to developmental testing data. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow. 

Bounds on Demonstrated Failure Intensity

Fisher Matrix Bounds

If there are no BC failure modes, the demonstrated failure intensity is

[math]\displaystyle{ {{\widehat{\lambda }}_{D}}(T)=\tfrac{{{N}_{A}}+{{N}_{BD}}}{T}\,\! }[/math].

Thus:

[math]\displaystyle{ Var({{\hat{\lambda }}_{D}}(t))=\frac{{{N}_{A}}}{{{T}^{2}}}+\frac{{{N}_{BD}}}{{{T}^{2}}}=\frac{{{\lambda }_{D}}(t)}{T}\,\! }[/math]

and:

[math]\displaystyle{ \sqrt{T}\left( \frac{{{{\hat{\lambda }}}_{D}}(T)-{{\lambda }_{D}}(T)}{\sqrt{{{\lambda }_{D}}(T)}} \right)\sim N(0,1)\,\! }[/math]
[math]\displaystyle{ {{\lambda }_{D}}(T)={{\hat{\lambda }}_{D}}(T)+\frac{{{C}^{2}}}{2}\pm \sqrt{{{{\hat{\lambda }}}_{D}}(T){{C}^{2}}+\frac{{{C}^{4}}}{4}}\,\! }[/math]

where [math]\displaystyle{ C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}}\,\! }[/math].

If there are BC failure modes, the demonstrated failure intensity, [math]\displaystyle{ {{\widehat{\lambda }}_{D}}(T)={{\widehat{\lambda }}_{CA}}\,\! }[/math], is actually the instantaneous failure intensity based on all of the data. [math]\displaystyle{ {{\lambda }_{CA}}(T)\,\! }[/math] must be positive; thus, [math]\displaystyle{ \ln {{\lambda }_{CA}}(T)\,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{CA}}(T)-\ln {{\lambda }_{CA}}(T)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{CA}}(T)})}\sim N(0,1)\,\! }[/math]

The approximate confidence bounds on the instantaneous failure intensity are then estimated from:

[math]\displaystyle{ CB={{\hat{\lambda }}_{CA}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{CA}}(T))}/{{{\hat{\lambda }}}_{i}}(T)}}\,\! }[/math]

where [math]\displaystyle{ {{\lambda }_{CA}}(t)=\lambda \beta {{T}^{\beta -1}}\,\! }[/math].

[math]\displaystyle{ \begin{align} Var({{{\hat{\lambda }}}_{CA}}(T))= & {{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as described in the Crow-AMSAA Confidence Bounds appendix.

Crow Bounds

If there are no BC failure modes then:

[math]\displaystyle{ \begin{align} {{[{{\lambda }_{D}}(T)]}_{l}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,1-\alpha /2)}^{2}}{2N} \\ {{[{{\lambda }_{D}}(T)]}_{u}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,\alpha /2)}^{2}}{2N} \end{align}\,\! }[/math]

where [math]\displaystyle{ {{\widehat{\lambda }}_{D}}(T)={{\widehat{\lambda }}_{CA}}\,\! }[/math].

If there are BC modes then the confidence bounds on the demonstrated failure intensity are calculated as presented in the Crow-AMSAA Confidence Bounds appendix.

Bounds on Demonstrated MTBF

Fisher Matrix Bounds

[math]\displaystyle{ \begin{align} & MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\ & MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}} \end{align}\,\! }[/math]

where [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{L}}\,\! }[/math] and [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{U}}\,\! }[/math] can be obtained from the equation given above for Bounds on Demonstrated Failure Intensity.

Crow Bounds

[math]\displaystyle{ \begin{align} MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\ MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}} \end{align}\,\! }[/math]

where [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{L}}\,\! }[/math] and [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{U}}\,\! }[/math] can be obtained from the equation given above for Bounds on Demonstrated Failure Intensity.

Bounds on Projected Failure Intensity

Fisher Matrix Bounds

The projected failure intensity [math]\displaystyle{ {{\lambda }_{P}}(T)\,\! }[/math] must be positive; thus, [math]\displaystyle{ \ln {{\lambda }_{P}}(T)\,\! }[/math] is approximately treated as being normally distributed as well:

[math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{P}}(T)-\ln {{\lambda }_{P}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{P}}(T)})}\sim N(0,1)\,\! }[/math]
[math]\displaystyle{ CB={{\hat{\lambda }}_{P}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{P}}(T))}/{{{\hat{\lambda }}}_{P}}(T)}}\,\! }[/math]

where:

  • [math]\displaystyle{ {{\hat{\lambda }}_{P}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}+\overline{d}\tfrac{M}{T}\bar{\beta }\,\! }[/math] when there are no BC modes.
  • [math]\displaystyle{ {{\hat{\lambda }}_{P}}(T)={{\widehat{\lambda }}_{EM}}={{\widehat{\lambda }}_{CA}}-{{\widehat{\lambda }}_{BD}}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}+\overline{d}\widehat{h}(T|BD)\,\! }[/math] when there are BC modes.
  • [math]\displaystyle{ {{N}_{i}}\,\! }[/math] is the total failure number of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] distinct BD mode.

You can then get:

[math]\displaystyle{ Var({{\lambda }_{P}}(T))\approx Var({{\hat{\gamma }}_{GP}})+\mu _{d}^{2}Var(h(T))\approx \frac{{{{\hat{r}}}_{GP}}}{T}+\mu _{d}^{2}Var(h(T))\,\! }[/math]

where:

[math]\displaystyle{ \begin{align} \hat{h}(T)= & \frac{M}{T}\bar{\beta } \\ Var(\hat{h}(T))= & {{(\frac{M}{T})}^{2}}Var(\bar{\beta })={{(\frac{M}{T})}^{2}}{{(\frac{M}{M-1})}^{2}}Var(\hat{\beta })=\frac{{{M}^{4}}}{{{T}^{2}}{{(M-1)}^{2}}}Var(\hat{\beta }) \end{align}\,\! }[/math]

The [math]\displaystyle{ Var(\hat{\beta })\,\! }[/math] can be obtained from Fisher Matrix based on [math]\displaystyle{ M\,\! }[/math] distinct BD modes.

Crow Bounds

[math]\displaystyle{ \begin{align} {{[{{\lambda }_{P}}(T)]}_{L}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot {{C}^{2}}+\frac{{{C}^{4}}}{4}} \\ {{[{{\lambda }_{P}}(T)]}_{U}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot \ \,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \end{align}\,\! }[/math]

where [math]\displaystyle{ C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}}\,\! }[/math].

Bounds on Projected MTBF

Fisher Matrix Bounds

[math]\displaystyle{ \begin{align} MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\ MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}} \end{align}\,\! }[/math]

[math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{U}}\,\! }[/math] and [math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{L}}\,\! }[/math] can be obtained from the equation given above for Bounds on Projected Failure Intensity.

Crow Bounds

[math]\displaystyle{ \begin{align} MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\ MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}} \end{align}\,\! }[/math]

[math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{U}}\,\! }[/math] and [math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{L}}\,\! }[/math] can be obtained from the equation given above for Bounds on Projected Failure Intensity.

Bounds on Growth Potential Failure Intensity

Fisher Matrix Bounds

If there are no BC failure modes, the growth potential failure intensity is

[math]\displaystyle{ {{\widehat{r}}_{GP}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}\,\! }[/math].

Then:

[math]\displaystyle{ \begin{align} Var({{\widehat{r}}_{GP}})= & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,{{(1-{{d}_{i}})}^{2}}\frac{{{N}_{i}}}{T} \right] \\ \le & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,(1-{{d}_{i}})\frac{{{N}_{i}}}{T} \right] \\ = & \frac{{{r}_{GP}}}{T} \end{align}\,\! }[/math]

If there are BC failure modes, the growth potential failure intensity is

[math]\displaystyle{ {{\widehat{r}}_{GP}}(T)={{\widehat{\lambda }}_{CA}}-{{\widehat{\lambda }}_{BD}}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T},\,\! }[/math] [math]\displaystyle{ Var({{\widehat{r}}_{GP}})\approx \tfrac{{{r}_{GP}}}{T}\,\! }[/math].

Therefore:

[math]\displaystyle{ \sqrt{T}\left( \frac{{{{\hat{r}}}_{GP}}-{{r}_{GP}}}{\sqrt{{{r}_{GP}}}} \right)\sim N(0,1)\,\! }[/math]

The confidence bounds on the growth potential failure intensity are as follows:

[math]\displaystyle{ \begin{align} {{r}_{L}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \\ {{r}_{U}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \end{align}\,\! }[/math]

where [math]\displaystyle{ C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}}\,\! }[/math].

Crow Bounds

The Crow bounds for the growth potential failure intensity are the same as the Fisher Matrix bounds.  

Bounds on Growth Potential MTBF

Fisher Matrix Bounds

[math]\displaystyle{ \begin{align} MTB{{F}_{G{{P}_{L}}}}= & \frac{1}{{{r}_{U}}} \\ MTB{{F}_{G{{P}_{U}}}}= & \frac{1}{{{r}_{L}}} \end{align}\,\! }[/math]

where [math]\displaystyle{ {{r}_{U}}\,\! }[/math] and [math]\displaystyle{ {{r}_{L}}\,\! }[/math] can be obtained from the equation given above for Bounds on Growth Potential Failure Intensity.

Crow Bounds

The Crow bounds for the growth potential MTBF are the same as the Fisher Matrix bounds.