Inverse Power Law (IPL)-Lognormal Model: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 126: | Line 126: | ||
*The standard deviation of each parameter are: <math>\,\!std\left ( \sigma \right )=0.12</math> , <math>\,\!std\left ( \beta _{0} \right )=3.0</math> and <math>\,\!std\left ( \beta _{1} \right )=0.6</math>. Therefore, their variances are: <math>\,\!Var\left ( \sigma \right )=0.0144</math> , <math>\,\!Var\left ( \beta _{0} \right )=9</math> and <math>\,\!Var\left ( \beta _{1} \right )=0.36</math>. | *The standard deviation of each parameter are: <math>\,\!std\left ( \sigma \right )=0.12</math> , <math>\,\!std\left ( \beta _{0} \right )=3.0</math> and <math>\,\!std\left ( \beta _{1} \right )=0.6</math>. | ||
:Therefore, their variances are: <math>\,\!Var\left ( \sigma \right )=0.0144</math> , <math>\,\!Var\left ( \beta _{0} \right )=9</math> and <math>\,\!Var\left ( \beta _{1} \right )=0.36</math>. | |||
*The log-likelihood value is -271.4. | *The log-likelihood value is -271.4. | ||
*The 95% two-sided confidence intervals are: for <math>\,\!< | *The 95% two-sided confidence intervals are: for <math>\,\!\sigma<\math> , it is [0.83, 1.32]; for <math>\,\!\beta _{0}</math> it is [21.6, 33.4]; for <math>\,\!beta _{1}</math> it is [-5.46, -3.11]. | ||
{{Reference_Example_Heading4|ALTA}} | {{Reference_Example_Heading4|ALTA}} |
Revision as of 22:30, 10 June 2014
ALTA_Reference_Examples_Banner.png