Repairable Systems Analysis Reference Example: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 63: Line 63:
::<math>\begin{align}
::<math>\begin{align}
\hat{\beta }=&\frac{\sum_{q=1}^{K}N_{q}}{\sum_{q=1}^{K}\sum_{i=1}^{N_{q}}ln \left(\frac{T}{N_{iq}}\right)}\\
\hat{\beta }=&\frac{\sum_{q=1}^{K}N_{q}}{\sum_{q=1}^{K}\sum_{i=1}^{N_{q}}ln \left(\frac{T}{N_{iq}}\right)}\\
 
\\
=&0.6153
=&0.6153
\end{align}\,\!</math>
\end{align}\,\!</math>





Revision as of 23:11, 6 June 2014

Weibull Reference Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at Weibull examples and Weibull reference examples.




Repairable Systems Analysis Reference Example

This example compares the results for a repairable systems analysis.


Reference Case

Crow, L.H., Reliability Analysis for Complex Repairable Systems, Reliability and Biometry: Statistical Analysis of Lifelength, pg. 385, 1974.


Data

Simulated Data for 3 Systems with End Time = 200 hours
System 1 System 2 System 3
4.3 0.1 8.4
4.4 5.6 32.4
10.2 18.6 44.7
23.5 19.5 48.4
23.8 24.2 50.6
26.4 26.7 73.6
74 45.1 98.7
77.1 45.8 112.2
92.1 72.7 129.8
197.2 75.7 136
98.6 195.8
120.1
161.8
180.6
190.8


Result

Beta = 0.615, Lambda = 0.461


Results in Weibull++

Since [math]\displaystyle{ \,\!S_{1}=S_{2}=S_{3}= }[/math] 0 and [math]\displaystyle{ \,\!T_{1}=T_{2}=T_{3}= }[/math] 200 then the maximum likelihood estimates of [math]\displaystyle{ \,\!\hat{\beta} }[/math] and [math]\displaystyle{ \,\!\hat{\lambda } }[/math] are given by:


[math]\displaystyle{ \begin{align} \hat{\beta }=&\frac{\sum_{q=1}^{K}N_{q}}{\sum_{q=1}^{K}\sum_{i=1}^{N_{q}}ln \left(\frac{T}{N_{iq}}\right)}\\ \\ =&0.6153 \end{align}\,\! }[/math]


[math]\displaystyle{ \begin{align} \hat{\lambda }=&\frac{\sum_{q=1}^{K}N_{q}}{KT^{\hat{\beta }}}\\ \\ =&0.4605 \end{align}\,\! }[/math]


Repairable SystemS SIAM Results.png