|
|
Line 1: |
Line 1: |
| '''Non-Parametric Recurrent Event Data Analysis MCF Example'''
| | [[Category: For Deletion]] |
| | |
| A health care company maintains five identical pieces of equipment used by a hospital. When a piece of equipment fails, the company sends a crew to repair it. The following table gives the failure and censoring ages for each machine, where the + sign indicates a censoring age.
| |
| | |
| <br>
| |
| <center><math>\begin{matrix}
| |
| Equipment ID & Months \\
| |
| \text{1} & \text{5, 10 , 15, 17+} \\
| |
| \text{2} & \text{6, 13, 17, 19+} \\
| |
| \text{3} & \text{12, 20, 25, 26+} \\
| |
| \text{4} & \text{13, 15, 24+} \\
| |
| \text{5} & \text{16, 22, 25, 28+} \\
| |
| \end{matrix}</math></center>
| |
| Estimate the MCF values.
| |
| | |
| <br>'''Solution'''
| |
| | |
| The MCF estimates are obtained as follows:
| |
| <center><math>\begin{matrix}
| |
| ID & Months ({{t}_{i}}) & State & {{r}_{i}} & 1/{{r}_{i}} & {{M}^{*}}({{t}_{i}}) \\
| |
| \text{1} & \text{5} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.20} \\
| |
| \text{2} & \text{6} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.20 + 0}\text{.20 = 0}\text{.40} \\
| |
| \text{1} & \text{10} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.40 + 0}\text{.20 = 0}\text{.60} \\
| |
| \text{3} & \text{12} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.60 + 0}\text{.20 = 0}\text{.80} \\
| |
| \text{2} & \text{13} & \text{F} & \text{5} & \text{0}\text{.20} & \text{0}\text{.80+0}\text{.20 =1}\text{.00} \\
| |
| \text{4} & \text{13} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.00 + 0}\text{.20 = 1}\text{.20} \\
| |
| \text{1} & \text{15} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.20 + 0}\text{.20 =1}\text{.40} \\
| |
| \text{4} & \text{15} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.40 + 0}\text{.20 = 1}\text{.60} \\
| |
| \text{5} & \text{16} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.60 + 0}\text{.20 = 1}\text{.80} \\
| |
| \text{2} & \text{17} & \text{F} & \text{5} & \text{0}\text{.20} & \text{1}\text{.80 + 0}\text{.20 = 2}\text{.0} \\
| |
| \text{1} & \text{17} & \text{S} & \text{4} & {} & {} \\
| |
| \text{2} & \text{19} & \text{S} & \text{3} & {} & {} \\
| |
| \text{3} & \text{20} & \text{F} & \text{3} & \text{0}\text{.33} & \text{2}\text{.00 + 0}\text{.33 = 2}\text{.33} \\
| |
| \text{5} & \text{22} & \text{F} & \text{3} & \text{0}\text{.33} & \text{2}\text{.33 + 0}\text{.33 = 2}\text{.66} \\
| |
| \text{4} & \text{24} & \text{S} & \text{2} & {} & {} \\
| |
| \text{3} & \text{25} & \text{F} & \text{2} & \text{0}\text{.50} & \text{2}\text{.66 + 0}\text{.50 = 3}\text{.16} \\
| |
| \text{5} & \text{25} & \text{F} & \text{2} & \text{0}\text{.50} & \text{3}\text{.16 + 0}\text{.50 = 3}\text{.66} \\
| |
| \text{3} & \text{26} & \text{S} & \text{1} & {} & {} \\
| |
| \text{5} & \text{28} & \text{S} & \text{0} & {} & {} \\
| |
| \end{matrix}</math></center>
| |