Template:Weibull likelihood ratio confidence bounds: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '== Likelihood Ratio Confidence Bounds == As covered in Chapter 5, the likelihood confidence bounds are calculated by finding values for <span class="texhtml">θ<sub>1</sub></spa…')
 
Line 1: Line 1:
== Likelihood Ratio Confidence Bounds ==
== Likelihood Ratio Confidence Bounds ==


As covered in Chapter 5, the likelihood confidence bounds are calculated by finding values for <span class="texhtml">θ<sub>1</sub></span> and <span class="texhtml">θ<sub>2</sub></span> that satisfy:  
As covered in [[Confidence Bounds|Chapter 6]], the likelihood confidence bounds are calculated by finding values for <span class="texhtml">θ<sub>1</sub></span> and <span class="texhtml">θ<sub>2</sub></span> that satisfy:  


::<math> -2\cdot \text{ln}\left( \frac{L(\theta _{1},\theta _{2})}{L(\hat{\theta }_{1}, \hat{\theta }_{2})}\right) =\chi _{\alpha ;1}^{2} EQNREF lratio2 </math>  
::<math> -2\cdot \text{ln}\left( \frac{L(\theta _{1},\theta _{2})}{L(\hat{\theta }_{1}, \hat{\theta }_{2})}\right) =\chi _{\alpha ;1}^{2} </math>  


This equation can be rewritten as:  
This equation can be rewritten as:  


::<math> L(\theta _{1},\theta _{2})=L(\hat{\theta }_{1},\hat{\theta } _{2})\cdot e^{\frac{-\chi _{\alpha ;1}^{2}}{2}} EQNREF lratio3 </math>


For complete data, the likelihood function for the Weibull distribution is given by:  
::<math> L(\theta _{1},\theta _{2})=L(\hat{\theta }_{1},\hat{\theta } _{2})\cdot e^{\frac{-\chi _{\alpha ;1}^{2}}{2}} </math>
 
For complete data, the likelihood function for the Weibull distribution is given by:


::<math> L(\beta ,\eta )=\prod_{i=1}^{N}f(x_{i};\beta ,\eta )=\prod_{i=1}^{N}\frac{ \beta }{\eta }\cdot \left( \frac{x_{i}}{\eta }\right) ^{\beta -1}\cdot e^{-\left( \frac{x_{i}}{\eta }\right) ^{\beta }} </math>  
::<math> L(\beta ,\eta )=\prod_{i=1}^{N}f(x_{i};\beta ,\eta )=\prod_{i=1}^{N}\frac{ \beta }{\eta }\cdot \left( \frac{x_{i}}{\eta }\right) ^{\beta -1}\cdot e^{-\left( \frac{x_{i}}{\eta }\right) ^{\beta }} </math>  


For a given value of <span class="texhtml">α</span>, values for <span class="texhtml">β</span> and <span class="texhtml">η</span> can be found which represent the maximum and minimum values that satisfy Eqn. (\ref {lratio3}). These represent the confidence bounds for the parameters at a confidence level <span class="texhtml">δ</span>, where <span class="texhtml">α = δ</span> for two-sided bounds and <span class="texhtml">α = 2δ − 1</span> for one-sided.  
For a given value of <span class="texhtml">α</span>, values for <span class="texhtml">β</span> and <span class="texhtml">η</span> can be found which represent the maximum and minimum values that satisfy the above equation. These represent the confidence bounds for the parameters at a confidence level <span class="texhtml">δ</span>, where <span class="texhtml">α = δ</span> for two-sided bounds and <span class="texhtml">α = 2δ − 1</span> for one-sided.  


Similarly, the bounds on time and reliability can be found by substituting the Weibull reliability equation into the likelihood function so that it is in terms of <span class="texhtml">β</span> and time or reliability, as discussed in Chapter 5. The likelihood ratio equation used to solve for bounds on time (Type 1) is:   
Similarly, the bounds on time and reliability can be found by substituting the Weibull reliability equation into the likelihood function so that it is in terms of <span class="texhtml">β</span> and time or reliability, as discussed in [[Confidence Bounds|Chapter 6]]. The likelihood ratio equation used to solve for bounds on time (Type 1) is:   
   
   



Revision as of 23:04, 9 February 2012

Likelihood Ratio Confidence Bounds

As covered in Chapter 6, the likelihood confidence bounds are calculated by finding values for θ1 and θ2 that satisfy:

[math]\displaystyle{ -2\cdot \text{ln}\left( \frac{L(\theta _{1},\theta _{2})}{L(\hat{\theta }_{1}, \hat{\theta }_{2})}\right) =\chi _{\alpha ;1}^{2} }[/math]

This equation can be rewritten as:


[math]\displaystyle{ L(\theta _{1},\theta _{2})=L(\hat{\theta }_{1},\hat{\theta } _{2})\cdot e^{\frac{-\chi _{\alpha ;1}^{2}}{2}} }[/math]

For complete data, the likelihood function for the Weibull distribution is given by:


[math]\displaystyle{ L(\beta ,\eta )=\prod_{i=1}^{N}f(x_{i};\beta ,\eta )=\prod_{i=1}^{N}\frac{ \beta }{\eta }\cdot \left( \frac{x_{i}}{\eta }\right) ^{\beta -1}\cdot e^{-\left( \frac{x_{i}}{\eta }\right) ^{\beta }} }[/math]

For a given value of α, values for β and η can be found which represent the maximum and minimum values that satisfy the above equation. These represent the confidence bounds for the parameters at a confidence level δ, where α = δ for two-sided bounds and α = 2δ − 1 for one-sided.

Similarly, the bounds on time and reliability can be found by substituting the Weibull reliability equation into the likelihood function so that it is in terms of β and time or reliability, as discussed in Chapter 6. The likelihood ratio equation used to solve for bounds on time (Type 1) is:


[math]\displaystyle{ L(\beta ,t)=\prod_{i=1}^{N}\frac{\beta }{\left( \frac{t}{(-\text{ln}(R))^{ \frac{1}{\beta }}}\right) }\cdot \left( \frac{x_{i}}{\left( \frac{t}{(-\text{ ln}(R))^{\frac{1}{\beta }}}\right) }\right) ^{\beta -1}\cdot \text{exp}\left[ -\left( \frac{x_{i}}{\left( \frac{t}{(-\text{ln}(R))^{\frac{1}{\beta }}} \right) }\right) ^{\beta }\right] }[/math]

The likelihood ratio equation used to solve for bounds on reliability (Type 2) is:

[math]\displaystyle{ L(\beta ,R)=\prod_{i=1}^{N}\frac{\beta }{\left( \frac{t}{(-\text{ln}(R))^{ \frac{1}{\beta }}}\right) }\cdot \left( \frac{x_{i}}{\left( \frac{t}{(-\text{ ln}(R))^{\frac{1}{\beta }}}\right) }\right) ^{\beta -1}\cdot \text{exp}\left[ -\left( \frac{x_{i}}{\left( \frac{t}{(-\text{ln}(R))^{\frac{1}{\beta }}} \right) }\right) ^{\beta }\right] }[/math]