Template:Grouped data camsaa

From ReliaWiki
Jump to navigation Jump to search

Grouped Data

For analyzing grouped data, we follow the same logic described previously for the Duane model. If Eqn. (amsaa2a) is linearized:

[math]\displaystyle{ \ln [E(N(T))]=\ln \lambda +\beta \ln T }[/math]

According to Crow [9], the likelihood function for the grouped data case, (where [math]\displaystyle{ {{n}_{1}}, }[/math] [math]\displaystyle{ {{n}_{2}}, }[/math] [math]\displaystyle{ {{n}_{3}},\ldots , }[/math] [math]\displaystyle{ {{n}_{k}} }[/math] failures are observed and [math]\displaystyle{ k }[/math] is the number of groups), is:

[math]\displaystyle{ \underset{i=1}{\overset{k}{\mathop \prod }}\,\underset{}{\overset{}{\mathop{\Pr }}}\,({{N}_{i}}={{n}_{i}})=\underset{i=1}{\overset{k}{\mathop \prod }}\,\frac{{{(\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })}^{{{n}_{i}}}}\cdot {{e}^{-(\lambda T_{i}^{\beta }-\lambda T_{i-1}^{\beta })}}}{{{n}_{i}}!} }[/math]

And the MLE of [math]\displaystyle{ \lambda }[/math] based on this relationship is:

[math]\displaystyle{ \widehat{\lambda }=\frac{n}{T_{k}^{\widehat{\beta }}} }[/math]

And the estimate of [math]\displaystyle{ \beta }[/math] is the value [math]\displaystyle{ \widehat{\beta } }[/math] that satisfies:

[math]\displaystyle{ \underset{i=1}{\overset{k}{\mathop \sum }}\,{{n}_{i}}\left[ \frac{T_{i}^{\widehat{\beta }}\ln {{T}_{i}}-T_{i-1}^{\widehat{\beta }}\ln {{T}_{i-1}}}{T_{i}^{\widehat{\beta }}-T_{i-1}^{\widehat{\beta }}}-\ln {{T}_{k}} \right]=0 }[/math]

Example 4
Consider the grouped failure times data given in Table 5.2. Solve for the Crow-AMSAA parameters using MLE.

Table 5.2 - Grouped failure times data
Run Number Cumulative Failures End Time(hr) [math]\displaystyle{ \ln{(T_i)} }[/math] [math]\displaystyle{ \ln{(T_i)^2} }[/math] [math]\displaystyle{ \ln{(\theta_i)} }[/math] [math]\displaystyle{ \ln{(T_i)}\cdot\ln{(\theta_i)} }[/math]
1 2 200 5.298 28.072 0.693 3.673
2 3 400 5.991 35.898 1.099 6.582
3 4 600 6.397 40.921 1.386 8.868
4 11 3000 8.006 64.102 2.398 19.198
Sum = 25.693 168.992 5.576 38.321

Solution To obtain the estimator of [math]\displaystyle{ \beta }[/math] , Eqn. (vv) must be solved numerically for [math]\displaystyle{ \beta }[/math] . Using RGA, the value of [math]\displaystyle{ \widehat{\beta } }[/math] is [math]\displaystyle{ 0.6315 }[/math] . Now plugging this value into Eqn. (vv1), the estimator of [math]\displaystyle{ \lambda }[/math] is:

[math]\displaystyle{ \begin{align} & \widehat{\lambda }= & \frac{11}{3,{{000}^{0.6315}}} \\ & = & 0.0701 \end{align} }[/math]

Therefore, the intensity function becomes:

[math]\displaystyle{ \widehat{\rho }(T)=0.0701\cdot 0.6315\cdot {{T}^{-0.3685}} }[/math]