New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.
As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at Weibull examples and Weibull reference examples.
1P-Weibull MLE Solution for Multiple Right Censored Data
|
This example validates the calculations for a 1-parameter Weibull MLE solution with right censored data in Weibull++ standard folios.
Reference Case
The data set in Table C.5 on page 633 in the book Statistical Methods for Reliability Data by Dr. Meeker and Dr. Escobar, John Wiley & Sons, 1998 is used.
Data
Number in State
|
State F or S
|
Time to Failure
|
288 |
S |
50
|
148 |
S |
150
|
1 |
F |
230
|
124 |
S |
250
|
1 |
F |
334
|
111 |
S |
350
|
1 |
F |
423
|
106 |
S |
450
|
99 |
S |
550
|
110 |
S |
650
|
114 |
S |
750
|
119 |
S |
850
|
127 |
S |
950
|
1 |
F |
990
|
1 |
F |
1009
|
123 |
S |
1050
|
93 |
S |
1150
|
47 |
S |
1250
|
41 |
S |
1350
|
27 |
S |
1450
|
1 |
F |
1510
|
11 |
S |
1550
|
6 |
S |
1650
|
1 |
S |
1850
|
2 |
S |
2050
|
Result
The formulas for calculating the ML [math]\displaystyle{ \eta\,\! }[/math] and the standard error of [math]\displaystyle{ \eta\,\! }[/math] are given on page 193.
- [math]\displaystyle{ \hat{\eta}=\left (\frac{\sum^{n}_{i=1}t^{\beta}_{i}}{r} \right)^{\frac{1}{\beta}}\,\! }[/math] and [math]\displaystyle{ se_{\hat{\eta}}=\frac{\hat{\eta}}{\beta}\sqrt{\frac{1}{r}}\,\! }[/math]
where [math]\displaystyle{ \beta\,\! }[/math] is given, [math]\displaystyle{ t_{i}\,\! }[/math] is the time for the ith observation, r is the number of failures. Appling this equation, we get the following results:
- [math]\displaystyle{ \hat{\eta}=\left (\frac{\sum^{n}_{i=1}t^{\beta}_{i}}{r} \right)^{\frac{1}{\beta}} = 12320.33\,\! }[/math] and [math]\displaystyle{ se_{\hat{\eta}}=\frac{\hat{\eta}}{\beta}\sqrt{\frac{1}{r}} = 2514.88\,\! }[/math]
Results in Weibull++
The variance of eta is 6.324612E+06. The standard deviation is 2514.88.