Concurrent Operating Times - Crow-AMSAA (NHPP) Example

From ReliaWiki
Revision as of 18:24, 20 January 2014 by Kate Racaza (talk | contribs) (Created page with '<noinclude>{{Banner RGA Examples}} ''This example appears in the Reliability Growth and Repairable System Analysis Reference book''. </noinclude> Six syste…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
RGA Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at RGA examples and RGA reference examples.




This example appears in the Reliability Growth and Repairable System Analysis Reference book.


Six systems were subjected to a reliability growth test and a total of 81 failures were observed. The following table presents the start and end times, along with the times-to-failure for each system. Do the following:

1) Estimate the parameters of the Crow-AMSAA model using maximum likelihood estimation.
2) How many additional failures would be generated if testing continues until 3,000 hours?


Multiple systems (concurrent operating times) Data
System 1 2 3 4 5 6
Start Time 0 0 0 0 0 0
End Time 504 541 454 474 436 500
Times-to-Failure 21 83 26 36 23 7
29 83 26 306 46 13
43 83 57 306 127 13
43 169 64 334 166 31
43 213 169 354 169 31
66 299 213 395 213 82
115 375 231 403 213 109
159 431 231 448 255 137
199 231 456 369 166
202 231 461 374 200
222 304 380 210
248 383 415 220
248 422
255 437
286 469
286 469
304
320
348
364
404
410
429

Solution

1) The next figure shows the parameters estimated using RGA.
2) The number of failures can be estimated using the Quick Calculation Pad, as shown next. The estimated number of failures at 3,000 hours is equal to 83.2451 and 81 failures were observed during testing. Therefore, the number of additional failures generated if testing continues until 3,000 hours is equal to [math]\displaystyle{ 83.2451-81=2.2451\approx 3\,\! }[/math].