Fleet Data Analysis

From ReliaWiki
Revision as of 06:22, 23 August 2012 by Lisa Hacker (talk | contribs) (Created page with '{{template:RGA BOOK|14|Fleet Data Analysis}} {{fleet analysis rsa}} ==General Examples== <br> ===Predicting the Number of Failures for Fleet Operation=== <br> Eleven systems fro…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/reliability_growth_and_repairable_system_analysis

Chapter 14: Fleet Data Analysis


RGAbox.png

Chapter 14  
Fleet Data Analysis  

Synthesis-icon.png

Available Software:
RGA

Examples icon.png

More Resources:
RGA examples

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/reliability_growth_and_repairable_system_analysis

Chapter 14: Fleet Data Analysis


RGAbox.png

Chapter 14  
Fleet Data Analysis  

Synthesis-icon.png

Available Software:
RGA

Examples icon.png

More Resources:
RGA examples

Template loop detected: Template:Fleet analysis rsa

General Examples


Predicting the Number of Failures for Fleet Operation


Eleven systems from the field were chosen for the purposes of a fleet analysis. Each system had at least one failure. All of the systems had a start time equal to zero and the last failure for each system corresponds to the end time. Group the data based on a fixed interval of 3000 hours and assume a fixed effectiveness factor equal to 0.4. Do the following:

1) Estimate the parameters of the Crow Extended model.
2) Based on the analysis does it appear that the systems were randomly ordered?
3) After the implementation of the delayed fixes, how many failures would you expect within the next 4000 hours of fleet operation.


Table 13.9 - Fleet data for Example 5
System Times-to-Failure
1 1137 BD1, 1268 BD2
2 682 BD3, 744 A, 1336 BD1
3 95 BD1, 1593 BD3
4 1421 A
5 1091 A, 1574 BD2
6 1415 BD4
7 598 BD4, 1290 BD1
8 1556 BD5
9 55 BD4
10 730 BD1, 1124 BD3
11 1400 BD4, 1568 A

Solution to Example 5=


1) Figure Repair1 shows the estimated Crow Extended parameters.
2) Upon observing the estimated parameter [math]\displaystyle{ \beta }[/math] it does appear that the systems were randomly ordered since [math]\displaystyle{ \beta =0.8569 }[/math] . This value is close to 1. You can also verify that the confidence bounds on [math]\displaystyle{ \beta }[/math] include 1 by going to the QCP and calculating the parameter bounds or by viewing the Beta Bounds plot. However, you can also determine graphically if the systems were randomly ordered by using the System Operation plot as shown in Figure Repair2. Looking at the Cum. Time Line, it does not appear that the failures have a trend associated with them. Therefore, the systems can be assumed to be randomly ordered.

[math]\displaystyle{ }[/math]

Estimated Crow Extended parameters.



System Operation plot.


General Examples


Predicting the Number of Failures for Fleet Operation


Eleven systems from the field were chosen for the purposes of a fleet analysis. Each system had at least one failure. All of the systems had a start time equal to zero and the last failure for each system corresponds to the end time. Group the data based on a fixed interval of 3000 hours and assume a fixed effectiveness factor equal to 0.4. Do the following:

1) Estimate the parameters of the Crow Extended model.
2) Based on the analysis does it appear that the systems were randomly ordered?
3) After the implementation of the delayed fixes, how many failures would you expect within the next 4000 hours of fleet operation.


Table 13.9 - Fleet data for Example 5
System Times-to-Failure
1 1137 BD1, 1268 BD2
2 682 BD3, 744 A, 1336 BD1
3 95 BD1, 1593 BD3
4 1421 A
5 1091 A, 1574 BD2
6 1415 BD4
7 598 BD4, 1290 BD1
8 1556 BD5
9 55 BD4
10 730 BD1, 1124 BD3
11 1400 BD4, 1568 A

Solution to Example 5=


1) Figure Repair1 shows the estimated Crow Extended parameters.
2) Upon observing the estimated parameter [math]\displaystyle{ \beta }[/math] it does appear that the systems were randomly ordered since [math]\displaystyle{ \beta =0.8569 }[/math] . This value is close to 1. You can also verify that the confidence bounds on [math]\displaystyle{ \beta }[/math] include 1 by going to the QCP and calculating the parameter bounds or by viewing the Beta Bounds plot. However, you can also determine graphically if the systems were randomly ordered by using the System Operation plot as shown in Figure Repair2. Looking at the Cum. Time Line, it does not appear that the failures have a trend associated with them. Therefore, the systems can be assumed to be randomly ordered.

[math]\displaystyle{ }[/math]

Estimated Crow Extended parameters.



System Operation plot.