Template:Example: 2P Weibull Distribution RRY

From ReliaWiki
Revision as of 23:24, 6 April 2012 by Kate Racaza (talk | contribs)
Jump to navigation Jump to search

2P Weibull Distribution RRY Example

Consider the data in Example 1, where six units were tested to failure and the following failure times were recorded: 16, 34, 53, 75, 93 and 120 hours. Estimate the parameters and the correlation coefficient using rank regression on Y, assuming that the data follow the two-parameter Weibull distribution.


Solution

Construct a table as shown below.

Table - Least Squares Analysis
[math]\displaystyle{ N }[/math] [math]\displaystyle{ T_{i} }[/math] [math]\displaystyle{ ln(T_{i}) }[/math] [math]\displaystyle{ F(T_i) }[/math] [math]\displaystyle{ y_{i} }[/math] [math]\displaystyle{ (ln{T_i})^2 }[/math] [math]\displaystyle{ {y_i}^2 }[/math] [math]\displaystyle{ (ln{T_i})y_i }[/math]
1 16 2.7726 0.1091 -2.1583 7.6873 4.6582 -5.9840
2 34 3.5264 0.2645 -1.1802 12.4352 1.393 -4.1620
3 53 3.9703 0.4214 -0.6030 15.7632 0.3637 -2.3943
4 75 4.3175 0.5786 -0.146 18.6407 0.0213 -0.6303
5 93 4.5326 0.7355 0.2851 20.5445 0.0813 1.2923
6 120 4.7875 0.8909 0.7955 22.9201 0.6328 3.8083
[math]\displaystyle{ \sum }[/math] 23.9068 -3.007 97.9909 7.1502 -8.0699


Utilizing the values from the table, calculate [math]\displaystyle{ \hat{a} }[/math] and [math]\displaystyle{ \hat{b} }[/math] using the following equations:

[math]\displaystyle{ \hat{b} =\frac{\sum\limits_{i=1}^{6}(\ln t_{i})y_{i}-(\sum\limits_{i=1}^{6}\ln t_{i})(\sum\limits_{i=1}^{6}y_{i})/6}{ \sum\limits_{i=1}^{6}(\ln t_{i})^{2}-(\sum\limits_{i=1}^{6}\ln t_{i})^{2}/6} }[/math]
[math]\displaystyle{ \hat{b}=\frac{-8.0699-(23.9068)(-3.0070)/6}{97.9909-(23.9068)^{2}/6} }[/math]

or

[math]\displaystyle{ \hat{b}=1.4301 }[/math]

and:

[math]\displaystyle{ \hat{a}=\overline{y}-\hat{b}\overline{T}=\frac{\sum \limits_{i=1}^{N}y_{i}}{N}-\hat{b}\frac{\sum\limits_{i=1}^{N}\ln t_{i}}{N } }[/math]

or:

[math]\displaystyle{ \hat{a}=\frac{(-3.0070)}{6}-(1.4301)\frac{23.9068}{6}=-6.19935 }[/math]

Therefore:

[math]\displaystyle{ \hat{\beta }=\hat{b}=1.4301 }[/math]

and:

[math]\displaystyle{ \hat{\eta }=e^{-\frac{\hat{a}}{\hat{b}}}=e^{-\frac{(-6.19935)}{ 1.4301}} }[/math]

or:

[math]\displaystyle{ \hat{\eta }=76.318\text{ hr} }[/math]

The correlation coefficient can be estimated as:

[math]\displaystyle{ \hat{\rho }=0.9956 }[/math]


This example can be repeated in the Weibull++ software, as shown next. The following picture shows a Weibull++ standard folio data sheet calculated with the 2P-Weibull distribution and rank regression on Y.

Weibull Distribution Example 3 RRY Result.png


The following plot shows the Weibull probability plot for the data set (with 90% two-sided confidence bounds).

Weibull Distribution Example 3 RRY Confidence Plot.png

If desired, the Weibull [math]\displaystyle{ pdf }[/math] representing the data set can be written as:

[math]\displaystyle{ f(t)={\frac{\beta }{\eta }}\left( {\frac{t}{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t}{\eta }}\right) ^{\beta }} }[/math]

or:

[math]\displaystyle{ f(t)={\frac{1.4302}{76.317}}\left( {\frac{t}{76.317}}\right) ^{0.4302}e^{-\left( {\frac{t}{76.317}}\right) ^{1.4302}} }[/math]

You can also plot this result by selecting Pdf Plot on the Plot Type drop-down list on the control panel.

Weibull Distribution Example 3 pdf Plot.png

From this point on, different results, reports and plots can be obtained.