Template:Gll weibull

From ReliaWiki
Revision as of 21:08, 16 January 2012 by Nicolette Young (talk | contribs) (Created page with '====GLL Weibull==== <br> The GLL-Weibull model can be derived by setting <math>\eta =L(\underline{X})</math> in Eqn. (GLL1), yielding the following GLL-Weibull <math>pdf</math…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

GLL Weibull


The GLL-Weibull model can be derived by setting [math]\displaystyle{ \eta =L(\underline{X}) }[/math] in Eqn. (GLL1), yielding the following GLL-Weibull [math]\displaystyle{ pdf }[/math] :


[math]\displaystyle{ f(t,\underline{X})=\beta \cdot {{t}^{\beta -1}}{{e}^{-\beta \left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)}}{{e}^{-{{t}^{\beta }}{{e}^{-\beta \left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)}}}} }[/math]


The total number of unknowns to solve for in this model is [math]\displaystyle{ n+2 }[/math] (i.e. [math]\displaystyle{ \beta ,{{a}_{0}},{{a}_{1}},...{{a}_{n}}). }[/math]