Template:Ipl ex rel function

From ReliaWiki
Revision as of 17:59, 13 January 2012 by Nicolette Young (talk | contribs) (Created page with '===IPL-Exponential Reliability Function=== <br> The IPL-exponential reliability function is given by: <br> ::<math>R(T,V)={{e}^{-TK{{V}^{n}}}}</math> <br> This function is the …')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

IPL-Exponential Reliability Function


The IPL-exponential reliability function is given by:


[math]\displaystyle{ R(T,V)={{e}^{-TK{{V}^{n}}}} }[/math]


This function is the complement of the IPL-exponential cumulative distribution function:



[math]\displaystyle{ R(T,V)=1-Q(T,V)=1-\mathop{}_{0}^{T}f(T,V)dT }[/math]


or:


[math]\displaystyle{ R(T,V)=1-\mathop{}_{0}^{T}K{{V}^{n}}{{e}^{-K{{V}^{n}}T}}dT={{e}^{-K{{V}^{n}}T}} }[/math]


Conditional Reliability


The conditional reliability function for the IPL-exponential model is given by:


[math]\displaystyle{ R(T,t,V)=\frac{R(T+t,V)}{R(T,V)}=\frac{{{e}^{-\lambda (T+t)}}}{{{e}^{-\lambda T}}}={{e}^{-K{{V}^{n}}t}} }[/math]


Reliable Life


For the IPL-exponential model, the reliable life or the mission duration for a desired reliability goal, [math]\displaystyle{ {{t}_{R}}, }[/math] is given by:


[math]\displaystyle{ R({{t}_{R}},V)={{e}^{-K{{V}^{n}}{{t}_{R}}}} }[/math]


[math]\displaystyle{ \ln [R({{t}_{R}},V)]=-K{{V}^{n}}{{t}_{R}} }[/math]


or:


[math]\displaystyle{ {{t}_{R}}=-\frac{1}{K{{V}^{n}}}\ln [R({{t}_{R}},V)] }[/math]