Template:Cb for the eyring-weib

From ReliaWiki
Revision as of 23:40, 12 January 2012 by Nicolette Young (talk | contribs) (Created page with '==Approximate Confidence Bounds for the Eyring-Weibull== <br> ===Bounds on the Parameters=== <br> From the asymptotically normal property of the maximum likelihood estimators, …')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Approximate Confidence Bounds for the Eyring-Weibull


Bounds on the Parameters


From the asymptotically normal property of the maximum likelihood estimators, and since [math]\displaystyle{ \widehat{\beta } }[/math] is a positive parameter, [math]\displaystyle{ \ln (\widehat{\beta }) }[/math] can then be treated as normally distributed. After performing this transformation, the bounds on the parameters are estimated from:


[math]\displaystyle{ \begin{align} & {{\beta }_{U}}= & \widehat{\beta }\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{\beta })}}{\widehat{\beta }}}} \\ & {{\beta }_{L}}= & \widehat{\beta }\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{\beta })}}{\widehat{\beta }}}} \end{align} }[/math]


also:


[math]\displaystyle{ \begin{align} & {{A}_{U}}= & \widehat{A}+{{K}_{\alpha }}\sqrt{Var(\widehat{A})} \\ & {{A}_{L}}= & \widehat{A}-{{K}_{\alpha }}\sqrt{Var(\widehat{A})} \end{align} }[/math]


and:


[math]\displaystyle{ \begin{align} & {{B}_{U}}= & \widehat{B}+{{K}_{\alpha }}\sqrt{Var(\widehat{B})} \\ & {{B}_{L}}= & \widehat{B}-{{K}_{\alpha }}\sqrt{Var(\widehat{B})} \end{align} }[/math]



The variances and covariances of [math]\displaystyle{ \beta , }[/math] [math]\displaystyle{ A, }[/math] and [math]\displaystyle{ B }[/math] are estimated from the Fisher matrix (evaluated at [math]\displaystyle{ \widehat{\beta }, }[/math] [math]\displaystyle{ \widehat{A}, }[/math] [math]\displaystyle{ \widehat{B}) }[/math] as follows:


[math]\displaystyle{ \left[ \begin{matrix} Var(\widehat{\beta }) & Cov(\widehat{\beta },\widehat{A}) & Cov(\widehat{\beta },\widehat{B}) \\ Cov(\widehat{A},\widehat{\beta }) & Var(\widehat{A}) & Cov(\widehat{A},\widehat{B}) \\ Cov(\widehat{B},\widehat{\beta }) & Cov(\widehat{B},\widehat{A}) & Var(\widehat{B}) \\ \end{matrix} \right]={{\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial A} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial B} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial A\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{A}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial A\partial B} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial A} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{B}^{2}}} \\ \end{matrix} \right]}^{-1}} }[/math]

Confidence Bounds on Reliability


The reliability function for the Eyring-Weibull model (ML estimate) is given by:


[math]\displaystyle{ \widehat{R}(T,V)={{e}^{-{{\left( T\cdot V\cdot {{e}^{\left( \widehat{A}-\tfrac{\widehat{B}}{V} \right)}} \right)}^{\widehat{\beta }}}}} }[/math]


or:


[math]\displaystyle{ \widehat{R}(T,V)={{e}^{-{{e}^{\ln \left[ {{\left( T\cdot V\cdot {{e}^{\left( \widehat{A}-\tfrac{\widehat{B}}{V} \right)}} \right)}^{\widehat{\beta }}} \right]}}}} }[/math]


Setting:


[math]\displaystyle{ \widehat{u}=\ln \left[ {{\left( T\cdot V\cdot {{e}^{\left( \widehat{A}-\tfrac{\widehat{B}}{V} \right)}} \right)}^{\widehat{\beta }}} \right] }[/math]


or:


[math]\displaystyle{ \widehat{u}=\widehat{\beta }\left[ \ln (T)+\ln (V)+\widehat{A}-\frac{\widehat{B}}{V} \right] }[/math]


The reliability function now becomes:


[math]\displaystyle{ \widehat{R}(T,V)={{e}^{-e\widehat{^{u}}}} }[/math]


The next step is to find the upper and lower bounds on [math]\displaystyle{ \widehat{u} }[/math] :


[math]\displaystyle{ {{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]


[math]\displaystyle{ {{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]


where:


[math]\displaystyle{ \begin{align} & Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial A} \right)}^{2}}Var(\widehat{A}) \\ & & +{{\left( \frac{\partial \widehat{u}}{\partial B} \right)}^{2}}Var(\widehat{B}) \\ & & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial A} \right)Cov(\widehat{\beta },\widehat{A}) \\ & & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial B} \right)Cov(\widehat{\beta },\widehat{B}) \\ & & +2\left( \frac{\partial \widehat{u}}{\partial A} \right)\left( \frac{\partial \widehat{u}}{\partial B} \right)Cov(\widehat{A},\widehat{B}) \end{align} }[/math]


or:



[math]\displaystyle{ \begin{align} & Var(\widehat{u})= & {{\left( \frac{\widehat{u}}{\widehat{\beta }} \right)}^{2}}Var(\widehat{\beta })+{{\widehat{\beta }}^{2}}Var(\widehat{A}) \\ & & +{{\left( \frac{\widehat{\beta }}{V} \right)}^{2}}Var(\widehat{B}) \\ & & +2\widehat{u}\cdot Cov(\widehat{\beta },\widehat{A})-\frac{2\widehat{u}}{V}Cov(\widehat{\beta },\widehat{B}) \\ & & -\frac{2{{\widehat{\beta }}^{2}}}{V}Cov(\widehat{A},\widehat{B}) \end{align} }[/math]


The upper and lower bounds on reliability are:


[math]\displaystyle{ \begin{align} & {{R}_{U}}= & {{e}^{-{{e}^{\left( {{u}_{L}} \right)}}}} \\ & {{R}_{L}}= & {{e}^{-{{e}^{\left( {{u}_{U}} \right)}}}} \end{align} }[/math]


where [math]\displaystyle{ {{u}_{U}} }[/math] and [math]\displaystyle{ {{u}_{L}} }[/math] are estimated using Eqns (EyrExpu) and (EyrExpl).

Confidence Bounds on Time


The bounds on time (ML estimate of time) for a given reliability are estimated by first solving the reliability function with respect to time:


[math]\displaystyle{ \begin{align} & \ln (R)= & -{{\left( \widehat{T}\cdot V\cdot {{e}^{\left( \widehat{A}-\tfrac{\widehat{B}}{V} \right)}} \right)}^{\widehat{\beta }}} \\ & \ln (-\ln (R))= & \widehat{\beta }\left( \ln \widehat{T}+\ln V+\widehat{A}-\frac{\widehat{B}}{V} \right) \end{align} }[/math]


or:


[math]\displaystyle{ \widehat{u}=\frac{1}{\widehat{\beta }}\ln (-\ln (R))-\ln V-\widehat{A}+\frac{\widehat{B}}{V} }[/math]


where

[math]\displaystyle{ }[/math]


The upper and lower bounds on [math]\displaystyle{ \widehat{u} }[/math] are then estimated from:


[math]\displaystyle{ {{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]


[math]\displaystyle{ {{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]


where:


[math]\displaystyle{ \begin{align} & Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial A} \right)}^{2}}Var(\widehat{A}) \\ & & +{{\left( \frac{\partial \widehat{u}}{\partial B} \right)}^{2}}Var(\widehat{B}) \\ & & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial A} \right)Cov(\widehat{\beta },\widehat{A}) \\ & & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial B} \right)Cov(\widehat{\beta },\widehat{B}) \\ & & +2\left( \frac{\partial \widehat{u}}{\partial A} \right)\left( \frac{\partial \widehat{u}}{\partial B} \right)Cov(\widehat{A},\widehat{B}) \end{align} }[/math]


or:


[math]\displaystyle{ \begin{align} & Var(\widehat{u})= & \frac{1}{{{\widehat{\beta }}^{4}}}{{\left[ \ln (-\ln (R)) \right]}^{2}}Var(\widehat{\beta }) \\ & & +Var(\widehat{A})+\frac{1}{{{V}^{2}}}Var(\widehat{B}) \\ & & +\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}}Cov(\widehat{\beta },\widehat{A})-\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}V}Cov(\widehat{\beta },\widehat{B}) \\ & & -\frac{2}{V}Cov(\widehat{A},\widehat{B}) \end{align} }[/math]


The upper and lower bounds on time are then found by:


[math]\displaystyle{ \begin{align} & {{T}_{U}}= & {{e}^{{{u}_{U}}}} \\ & {{T}_{L}}= & {{e}^{{{u}_{L}}}} \end{align} }[/math]


where [math]\displaystyle{ {{u}_{U}} }[/math] and [math]\displaystyle{ {{u}_{L}} }[/math] are estimated using Eqns. (EyrTimeu) and (EyrTimel).