Template:Appr conf bounds for arr-exp

From ReliaWiki
Revision as of 22:16, 12 January 2012 by Nicolette Young (talk | contribs) (Created page with '==Approximate Confidence Bounds for the Arrhenius-Exponential== <br> There are different methods for computing confidence bounds. ALTA utilizes confidence bounds that are based o…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Approximate Confidence Bounds for the Arrhenius-Exponential


There are different methods for computing confidence bounds. ALTA utilizes confidence bounds that are based on the asymptotic theory for maximum likelihood estimates, most commonly referred to as the Fisher matrix bounds.

Confidence Bounds on the Mean Life


The Arrhenius-exponential distribution is given by Eqn. (arrhenius) by setting [math]\displaystyle{ m=L(V) }[/math] as shown in Eqn. (Arrean). The upper [math]\displaystyle{ ({{m}_{U}}) }[/math] and lower [math]\displaystyle{ ({{m}_{L}}) }[/math] bounds on the mean life are then estimated by:


[math]\displaystyle{ \begin{align} & {{m}_{U}}= & \widehat{m}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} \\ & {{m}_{L}}= & \widehat{m}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} \end{align} }[/math]


where [math]\displaystyle{ {{K}_{\alpha }} }[/math] is defined by:


[math]\displaystyle{ \alpha =\frac{1}{\sqrt{2\pi }}\mathop{}_{{{K}_{\alpha }}}^{\infty }{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }}) }[/math]


If [math]\displaystyle{ \delta }[/math] is the confidence level (i.e., 95%=0.95), then [math]\displaystyle{ \alpha =\tfrac{1-\delta }{2} }[/math] for the two-sided bounds, and [math]\displaystyle{ \alpha =1-\delta }[/math] for the one-sided bounds. The variance of [math]\displaystyle{ \widehat{m} }[/math] is given by:


[math]\displaystyle{ \begin{align} & Var(\widehat{m})= & {{\left( \frac{\partial m}{\partial C} \right)}^{2}}Var(\widehat{C})+{{\left( \frac{\partial m}{\partial B} \right)}^{2}}Var(\widehat{B}) \\ & & +2\left( \frac{\partial m}{\partial C} \right)\left( \frac{\partial m}{\partial B} \right)Cov(\widehat{B},\widehat{C}) \end{align} }[/math]



or:


[math]\displaystyle{ Var(\widehat{m})={{e}^{\tfrac{2\widehat{B}}{V}}}\left[ Var(\widehat{C})+\frac{{{\widehat{C}}^{2}}}{{{V}^{2}}}Var(\widehat{B})+\frac{2\widehat{C}}{V}Cov(\widehat{B},\widehat{C}) \right] }[/math]


The variances and covariance of [math]\displaystyle{ B }[/math] and [math]\displaystyle{ C }[/math] are estimated from the local Fisher matrix (evaluated at [math]\displaystyle{ \widehat{B} }[/math] , [math]\displaystyle{ \widehat{C}) }[/math] as follows:


[math]\displaystyle{ \left[ \begin{matrix} Var(\widehat{B}) & Cov(\widehat{B},\widehat{C}) \\ Cov(\widehat{C},\widehat{B}) & Var(\widehat{C}) \\ \end{matrix} \right]={{\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{B}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial C} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{C}^{2}}} \\ \end{matrix} \right]}^{-1}} }[/math]

Confidence Bounds on Reliability


The bounds on reliability for any given time, [math]\displaystyle{ T }[/math] , are estimated by:

[math]\displaystyle{ \begin{align} & {{R}_{U}}(T)= & {{e}^{-\tfrac{T}{{{m}_{U}}}}} \\ & {{R}_{L}}(T)= & {{e}^{-\tfrac{T}{{{m}_{L}}}}} \end{align} }[/math]


where [math]\displaystyle{ {{m}_{U}} }[/math] and [math]\displaystyle{ {{m}_{L}} }[/math] are estimated using Eqns. (ArrhuUpper) and (ArrhuLower).

Confidence Bounds on Time


The bounds on time (ML estimate of time) for a given reliability are estimated by first solving the reliability function with respect to time:


[math]\displaystyle{ \widehat{T}=-\widehat{m}\cdot \ln (R) }[/math]


The corresponding confidence bounds are then estimated from:


[math]\displaystyle{ \begin{align} & {{T}_{U}}= & -{{m}_{U}}\cdot \ln (R) \\ & {{T}_{L}}= & -{{m}_{L}}\cdot \ln (R) \end{align} }[/math]


where [math]\displaystyle{ {{m}_{U}} }[/math] and [math]\displaystyle{ {{m}_{L}} }[/math] are estimated using Eqns. (ArrhuUpper) and (ArrhuLower).