Template:Nominal failure intensity function
Jump to navigation
Jump to search
Nominal Failure Intensity Function
The nominal idealized growth curve failure intensity as a function of test time [math]\displaystyle{ t }[/math] is:
- [math]\displaystyle{ {{r}_{NI}}(t)={{\lambda }_{A}}+(1-d){{\lambda }_{B}}+d\lambda \beta {{t}^{\left( \beta -1 \right)}}\text{ for }t\ge {{t}_{0}} }[/math]
- and:
- [math]\displaystyle{ {{r}_{NI}}(t)={{\lambda }_{I}}\text{ for }t\le {{t}_{0}} }[/math]
where [math]\displaystyle{ {{\lambda }_{I}} }[/math] is the initial system failure intensity, [math]\displaystyle{ t }[/math] is test time and [math]\displaystyle{ {{t}_{0}} }[/math] is the initialization time, which is discussed in the next section.
It can be seen that Eqn. (Nominal FI) is the failure intensity equation of the Crow Extended model.