Template:Exponential Probability Density Function
Jump to navigation
Jump to search
Exponential Probability Density Function
The Two-Parameter Exponential Distribution
The two-parameter exponential pdf is given by:
- [math]\displaystyle{ f(T)=\lambda {{e}^{-\lambda (T-\gamma )}},f(T)\ge 0,\lambda \gt 0,T\ge 0\text{ or }\gamma }[/math]
where [math]\displaystyle{ \gamma }[/math] is the location parameter. Some of the characteristics of the two-parameter exponential distribution are [19]:
- The location parameter, [math]\displaystyle{ \gamma }[/math], if positive, shifts the beginning of the distribution by a distance of [math]\displaystyle{ \gamma }[/math] to the right of the origin, signifying that the chance failures start to occur only after [math]\displaystyle{ \gamma }[/math] hours of operation, and cannot occur before.
- The scale parameter is [math]\displaystyle{ \tfrac{1}{\lambda }=\bar{T}-\gamma =m-\gamma }[/math].
- The exponential [math]\displaystyle{ pdf }[/math] has no shape parameter, as it has only one shape.
- The distribution starts at [math]\displaystyle{ T=\gamma }[/math] at the level of [math]\displaystyle{ f(T=\gamma )=\lambda }[/math] and decreases thereafter exponentially and monotonically as [math]\displaystyle{ T }[/math] increases beyond [math]\displaystyle{ \gamma }[/math] and is convex.
- As [math]\displaystyle{ T\to \infty }[/math], [math]\displaystyle{ f(T)\to 0 }[/math].
The One-Parameter Exponential Distribution
The one-parameter exponential [math]\displaystyle{ pdf }[/math] is obtained by setting [math]\displaystyle{ \gamma =0 }[/math], and is given by:
- [math]\displaystyle{ \begin{align}f(T)= & \lambda {{e}^{-\lambda T}}=\frac{1}{m}{{e}^{-\tfrac{1}{m}T}}, & T\ge 0, \lambda \gt 0,m\gt 0 \end{align} }[/math]
- where:
This distribution requires the knowledge of only one parameter, [math]\displaystyle{ \lambda }[/math], for its application. Some of the characteristics of the one-parameter exponential distribution are [19]:
- The location parameter, [math]\displaystyle{ \gamma }[/math], is zero.
- The scale parameter is [math]\displaystyle{ \tfrac{1}{\lambda }=m }[/math].
- As [math]\displaystyle{ \lambda }[/math] is decreased in value, the distribution is stretched out to the right, and as [math]\displaystyle{ \lambda }[/math] is increased, the distribution is pushed toward the origin.
- This distribution has no shape parameter as it has only one shape, i.e. the exponential, and the only parameter it has is the failure rate, [math]\displaystyle{ \lambda }[/math].
- The distribution starts at [math]\displaystyle{ T=0 }[/math] at the level of [math]\displaystyle{ f(T=0)=\lambda }[/math] and decreases thereafter exponentially and monotonically as [math]\displaystyle{ T }[/math] increases, and is convex.
- As [math]\displaystyle{ T\to \infty }[/math] , [math]\displaystyle{ f(T)\to 0 }[/math].
- The [math]\displaystyle{ pdf }[/math] can be thought of as a special case of the Weibull [math]\displaystyle{ pdf }[/math] with [math]\displaystyle{ \gamma =0 }[/math] and [math]\displaystyle{ \beta =1 }[/math].