Weibull++ Standard Folio Data Lognormal

From ReliaWiki
Revision as of 19:03, 11 November 2011 by Pantelis (talk | contribs)
Jump to navigation Jump to search

Reliability Web Notes

Weibull Folio
Life Data Analysis

The lognormal distribution is commonly used to model the lives of units whose failure modes are of a fatigue-stress nature. It has an increasing failure rate behavior and then decreasing towards the end of life.


The lognormal distribution is a two-parameter distribution with parameters
[math]\displaystyle{ {\mu }' }[/math] and [math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math].
The pdf is given by:

[math]\displaystyle{ f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]


where,
[math]\displaystyle{ {T}'=\ln (T) }[/math]. , where the [math]\displaystyle{ T }[/math] values are the times-to-failure, and

[math]\displaystyle{ \mu'=\text{mean of the natural logarithms} }[/math]
[math]\displaystyle{ \text{of the times-to-failure,} }[/math]
[math]\displaystyle{ \sigma_{T'}=\text{standard deviation of the natural logarithms} }[/math]
[math]\displaystyle{ \text{of the times-to-failure} }[/math]


Get More Details...
See Examples...










Docedit.png