New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.
As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at Weibull examples and Weibull reference examples.
Lognormal MLE Solution with Right Censored Data
|
This example compares the Lognormal MLE solution with Fisher matrix bound for right censored data.
Reference Case
The data on page 199 of the book Statistical Methods for Reliability Data by Dr. Meeker and Dr. Escobar, John Wiley & Sons, 1998 is used.
Data
Number in State
|
State F or S
|
Time to Failure
|
1 |
F |
252
|
1 |
F |
315
|
1 |
F |
369
|
1 |
F |
403
|
1 |
F |
474
|
15 |
S |
500
|
Result
- The MLE solution is [math]\displaystyle{ \hat{\mu} = 6.56, \ \hat{\sigma} = 0.543\,\! }[/math].
- The variance and covariance matrix is
- [math]\displaystyle{
\sum =\begin{bmatrix}
0.0581 & 0.0374 \\
0.0374 & 0.0405
\end{bmatrix}\,\! }[/math]
Results in Weibull++
- The MLE solution and the variance/covariance matrix:
- The Fisher matrix bound for parameters:
- For Ln-mu (using normal approximation of Eqn. 8.7 on page 187):
- [math]\displaystyle{ [\hat{\mu}'_{L}, \hat{\mu}'_{U}] = \hat{\mu}' \pm z_{(1-\alpha \setminus 2)}se_{\hat{\mu}'}\,\! }[/math]
- For a confidence level of 0.95, it is:
- [math]\displaystyle{ \begin{alignat}{2}
[\hat{\mu}'_{L}, \hat{\mu}'_{U}] =& \hat{\mu}' \pm z_{(1-\alpha \setminus 2)}se_{\hat{\mu}'}\\
=& 6.564256 \pm 1.96 \times (0.0581)^{0.5}\\
=& [6.0918, 7.0366933]\\
\end{alignat}\,\! }[/math]
- For Ln-Std (using log-normal approximation of Eqn. 8.8 on page 188):
- [math]\displaystyle{ [\hat{\sigma}'_{L}, \hat{\sigma}'_{U}] = \hat{\sigma}'exp (\pm \frac{z_{(1-\alpha \setminus 2)}se_{\hat{\sigma'}}}{\hat{\sigma}'})\,\! }[/math]
- For confidence level of 0.95, it is:
- [math]\displaystyle{ \begin{alignat}{2}
[\hat{\sigma}'_{L}, \hat{\sigma}'_{U}] =& \hat{\sigma}'exp (\pm \frac{z_{(1-\alpha \setminus 2)}se_{\hat{\sigma'}}}{\hat{\sigma}'})\\
=& 0.534049 \times exp(\pm \tfrac{1.96\times 0.040562^{0.5}}{0.534049})\\
=& [0.255, 1.118]\\
\end{alignat} \,\! }[/math]
- The results in Weibull++ are: