Lognormal MLE Solution with Right Censored Data

From ReliaWiki
Revision as of 20:39, 4 June 2014 by Kate Racaza (talk | contribs) (Created page with '{{Reference Example}} This example compares the Lognormal MLE solution with Fisher matrix bound for right censored data. {{Reference_Example_Heading1}} The data on page 199 of…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Weibull Reference Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at Weibull examples and Weibull reference examples.




Lognormal MLE Solution with Right Censored Data

This example compares the Lognormal MLE solution with Fisher matrix bound for right censored data.


Reference Case

The data on page 199 of the book Statistical Methods for Reliability Data by Dr. Meeker and Dr. Escobar, John Wiley & Sons, 1998 is used.


Data

Number in State State F or S Time to Failure
1 F 252
1 F 315
1 F 369
1 F 403
1 F 474
15 S 500


Result

  • The MLE solution is [math]\displaystyle{ \hat{\mu} = 6.56, \ \hat{\sigma} = 0.543\,\! }[/math].


  • The variance and covariance matrix is
[math]\displaystyle{ \sum =\begin{bmatrix} 0.0581 & 0.0374 \\ 0.0374 & 0.0405 \end{bmatrix}\,\! }[/math]


Results in Weibull++


  • The MLE solution and the variance/covariance matrix:
Lg right censored matrix.png


  • The Fisher matrix bound for parameters:
For Ln-mu (using normal approximation of Eqn. 8.7 on page 187):
[math]\displaystyle{ [\hat{\mu}'_{L}, \hat{\mu}'_{U}] = \hat{\mu}' \pm z_{(1-\alpha \setminus 2)}se_{\hat{\mu}'}\,\! }[/math]


For a confidence level of 0.95, it is:
[math]\displaystyle{ \begin{alignat}{2} [\hat{\mu}'_{L}, \hat{\mu}'_{U}] =& \hat{\mu}' \pm z_{(1-\alpha \setminus 2)}se_{\hat{\mu}'}\\ =& 6.564256 \pm 1.96 \times (0.0581)^{0.5}\\ =& [6.0918, 7.0366933]\\ \end{alignat}\,\! }[/math]


For Ln-Std (using log-normal approximation of Eqn. 8.8 on page 188):
[math]\displaystyle{ [\hat{\sigma}'_{L}, \hat{\sigma}'_{U}] = \hat{\sigma}'exp (\pm \frac{z_{(1-\alpha \setminus 2)}se_{\hat{\sigma'}}}{\hat{\sigma}'})\,\! }[/math]


For confidence level of 0.95, it is:
[math]\displaystyle{ \begin{alignat}{2} [\hat{\sigma}'_{L}, \hat{\sigma}'_{U}] =& \hat{\sigma}'exp (\pm \frac{z_{(1-\alpha \setminus 2)}se_{\hat{\sigma'}}}{\hat{\sigma}'})\\ =& 0.534049 \times exp(\pm \tfrac{1.96\times 0.040562^{0.5}}{0.534049})\\ =& [0.255, 1.118]\\ \end{alignat} \,\! }[/math]


The results in Weibull++ are:
Lg right censored bounds.png