Crow-AMSAA Parameter Estimation Example

From ReliaWiki
Revision as of 22:42, 21 November 2013 by Kate Racaza (talk | contribs) (Created page with '<noinclude>{{Banner RGA Examples}} ''This example appears in the Reliability Growth and Repairable System Analysis Reference book''. </noinclude> Two proto…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
RGA Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at RGA examples and RGA reference examples.




This example appears in the Reliability Growth and Repairable System Analysis Reference book.


Two prototypes of a system were tested simultaneously with design changes incorporated during the test. The following table presents the data collected over the entire test. Find the Crow-AMSAA parameters and the intensity function using maximum likelihood estimators.

Developmental test data for two identical systems
Failure Number Failed Unit Test Time Unit 1(hours) Test Time Unit 2(hours) Total Test Time(hours) [math]\displaystyle{ ln{(T)}\,\! }[/math]
1 1 1.0 1.7 2.7 0.99325
2 1 7.3 3.0 10.3 2.33214
3 2 8.7 3.8 12.5 2.52573
4 2 23.3 7.3 30.6 3.42100
5 2 46.4 10.6 57.0 4.04305
6 1 50.1 11.2 61.3 4.11578
7 1 57.8 22.2 80.0 4.38203
8 2 82.1 27.4 109.5 4.69592
9 2 86.6 38.4 125.0 4.82831
10 1 87.0 41.6 128.6 4.85671
11 2 98.7 45.1 143.8 4.96842
12 1 102.2 65.7 167.9 5.12337
13 1 139.2 90.0 229.2 5.43459
14 1 166.6 130.1 296.7 5.69272
15 2 180.8 139.8 320.6 5.77019
16 1 181.3 146.9 328.2 5.79362
17 2 207.9 158.3 366.2 5.90318
18 2 209.8 186.9 396.7 5.98318
19 2 226.9 194.2 421.1 6.04287
20 1 232.2 206.0 438.2 6.08268
21 2 267.5 233.7 501.2 6.21701
22 2 330.1 289.9 620.0 6.42972

Solution

For the failure terminated test, [math]\displaystyle{ {\beta}\,\! }[/math] is:

[math]\displaystyle{ \begin{align} \widehat{\beta }&=\frac{n}{n\ln {{T}^{*}}-\underset{i=1}{\overset{n}{\mathop{\sum }}}\,\ln {{T}_{i}}} \\ &=\frac{22}{22\ln 620-\underset{i=1}{\overset{22}{\mathop{\sum }}}\,\ln {{T}_{i}}} \\ \end{align}\,\! }[/math]
where:
[math]\displaystyle{ \underset{i=1}{\overset{22}{\mathop \sum }}\,\ln {{T}_{i}}=105.6355\,\! }[/math]


Then:
[math]\displaystyle{ \widehat{\beta }=\frac{22}{22\ln 620-105.6355}=0.6142\,\! }[/math]


And for [math]\displaystyle{ {\lambda}\,\! }[/math] :

[math]\displaystyle{ \begin{align} \widehat{\lambda }&=\frac{n}{{{T}^{*\beta }}} \\ & =\frac{22}{{{620}^{0.6142}}}=0.4239 \\ \end{align}\,\! }[/math]


Therefore, [math]\displaystyle{ {{\lambda }_{i}}(T)\,\! }[/math] becomes:

[math]\displaystyle{ \begin{align} {{\widehat{\lambda }}_{i}}(T)= & 0.4239\cdot 0.6142\cdot {{620}^{-0.3858}} \\ = & 0.0217906\frac{\text{failures}}{\text{hr}} \end{align}\,\! }[/math]

The next figure shows the plot of the failure rate. If no further changes are made, the estimated MTBF is [math]\displaystyle{ \tfrac{1}{0.0217906}\,\! }[/math] or 46 hours.