Template:Bounds on instantaneous failure intensity camsaa-cb
Jump to navigation
Jump to search
Bounds on Instantaneous Failure Intensity
Fisher Matrix Bounds
The instantaneous failure intensity, [math]\displaystyle{ {{\lambda }_{i}}(t) }[/math] , must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{i}}(t) }[/math] is treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{i}}(t)-\ln {{\lambda }_{i}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{i}}(t)})}\text{ }\tilde{\ }\text{ }N(0,1) }[/math]
The approximate confidence bounds on the instantaneous failure intensity are then estimated from:
- [math]\displaystyle{ CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{i}}(t))}/{{{\hat{\lambda }}}_{i}}(t)}} }[/math]
- where
- [math]\displaystyle{ {{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}} }[/math]
- [math]\displaystyle{ \begin{align} & Var({{{\hat{\lambda }}}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda }) \end{align} }[/math]
The variance calculation is the same as Eqn. (variance1) and:
- [math]\displaystyle{ \begin{align} & \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln t \\ & \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}} \end{align} }[/math]
Crow Bounds
The Crow instantaneous failure intensity confidence bounds are given as:
- [math]\displaystyle{ \begin{align} & {{\lambda }_{i}}{{(t)}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\ & {{\lambda }_{i}}{{(t)}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}} \end{align} }[/math]