Template:Simple actuarial method
Simple Actuarial Method
The simple actuarial method is an easy-to-use form of nonparametric data analysis that can be used for multiply censored data that are arranged in intervals. This method is based on calculating the number of failures in a time interval, [math]\displaystyle{ {{r}_{j}}, }[/math] versus the number of operating units in that time period, [math]\displaystyle{ {{n}_{j}} }[/math] . The equation for the reliability estimator for the standard actuarial method is given by:
- [math]\displaystyle{ \widehat{R}({{t}_{i}})=\underset{j=1}{\overset{i}{\mathop \prod }}\,\left( 1-\frac{{{r}_{j}}}{{{n}_{j}}} \right),\text{ }i=1,...,m }[/math]
- where:
- [math]\displaystyle{ \begin{align} & m= & \text{the total number of intervals} \\ & n= & \text{the total number of units} \end{align} }[/math]
The variable [math]\displaystyle{ {{n}_{i}} }[/math] is defined by:
- [math]\displaystyle{ {{n}_{i}}=n-\underset{j=0}{\overset{i-1}{\mathop \sum }}\,{{s}_{j}}-\underset{j=0}{\overset{i-1}{\mathop \sum }}\,{{r}_{j,}}\text{ }i=1,...,m }[/math]
- where:
- [math]\displaystyle{ \begin{align} & {{r}_{j}}= & \text{the number of failures in interval }j \\ & {{s}_{j}}= & \text{the number of suspensions in interval }j \end{align} }[/math]
Example 10
A group of 55 units are put on a life test during which the units are evaluated every 50 hours, with the following results:
Solution to Example 10
The reliability estimates for the simple actuarial method can be obtained by expanding the data table to include terms used in calculation of the reliability estimates for Eqn. (simpact):
As can be determined from the preceding table, the reliability estimates for the failure times are: