Template:Acb-w on the parameters
Bounds on the Parameters
The lower and upper bounds on [math]\displaystyle{ B }[/math] are estimated from:
- [math]\displaystyle{ \begin{align} & {{B}_{U}}= \widehat{B}+{{K}_{\alpha }}\sqrt{Var(\widehat{B})}\text{ (Upper bound)} \\ & {{B}_{L}}= \widehat{B}-{{K}_{\alpha }}\sqrt{Var(\widehat{B})}\text{ (Lower bound)} \end{align} }[/math]
Since the standard deviation, [math]\displaystyle{ {{\widehat{\sigma }}_{{{T}'}}} }[/math] , and the parameter [math]\displaystyle{ C }[/math] are positive parameters, [math]\displaystyle{ \ln ({{\widehat{\sigma }}_{{{T}'}}}) }[/math] and [math]\displaystyle{ \ln (C) }[/math] are treated as normally distributed. The bounds are estimated from:
- [math]\displaystyle{ \begin{align} & {{C}_{U}}= \widehat{C}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{C})}}{\widehat{C}}}}\text{ (Upper bound)} \\ & {{C}_{L}}= \frac{\widehat{C}}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{C})}}{\widehat{C}}}}}\text{ (Lower bound)} \end{align} }[/math]
and:
- [math]\displaystyle{ \begin{align} & {{\sigma }_{U}}= {{\widehat{\sigma }}_{{{T}'}}}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}}\text{ (Upper bound)} \\ & {{\sigma }_{L}}= \frac{{{\widehat{\sigma }}_{{{T}'}}}}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}}}\text{ (Lower bound)} \end{align} }[/math]
The variances and covariances of [math]\displaystyle{ B, }[/math] [math]\displaystyle{ C, }[/math] and [math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math] are estimated from the local Fisher matrix (evaluated at [math]\displaystyle{ \widehat{B}, }[/math] [math]\displaystyle{ \widehat{C} }[/math] , [math]\displaystyle{ {{\widehat{\sigma }}_{{{T}'}}}), }[/math] as follows:
- [math]\displaystyle{ \left[ \begin{matrix} Var\left( {{\widehat{\sigma }}_{{{T}'}}} \right) & Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) & Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ Cov\left( {{\widehat{\sigma }}_{{{T}'}}},\widehat{B} \right) & Var\left( \widehat{B} \right) & Cov\left( \widehat{B},\widehat{C} \right) \\ Cov\left( {{\widehat{\sigma }}_{{{T}'}}},\widehat{C} \right) & Cov\left( \widehat{C},\widehat{B} \right) & Var\left( \widehat{C} \right) \\ \end{matrix} \right]= }[/math]
- [math]\displaystyle{ ={{\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial \sigma _{{{T}'}}^{2}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial C} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{B}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial C} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{C}^{2}}} \\ \end{matrix} \right]}^{-1}} }[/math]