The IPL-Weibull model can be derived by setting [math]\displaystyle{ \eta =L(V) }[/math] , yielding the following IPL-Weibull [math]\displaystyle{ pdf\ \ : }[/math]
- [math]\displaystyle{ f(t,V)=\beta K{{V}^{n}}{{\left( K{{V}^{n}}t \right)}^{\beta -1}}{{e}^{-{{\left( K{{V}^{n}}t \right)}^{\beta }}}} }[/math]
This is a three parameter model. Therefore it is more flexible but it also requires more laborious techniques for parameter estimation. The IPL-Weibull model yields the IPL-exponential model for [math]\displaystyle{ \beta =1. }[/math]
|