Template:Alta eyring-weibull

From ReliaWiki
Revision as of 22:39, 12 January 2012 by Nicolette Young (talk | contribs) (Created page with '==Eyring-Weibull== <br> The <math>pdf</math> for 2-parameter Weibull distribution is given by: <br> ::<math>f(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta …')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Eyring-Weibull


The [math]\displaystyle{ pdf }[/math] for 2-parameter Weibull distribution is given by:


[math]\displaystyle{ f(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}} }[/math]


The scale parameter (or characteristic life) of the Weibull distribution is [math]\displaystyle{ \eta }[/math] . The Eyring-Weibull model [math]\displaystyle{ pdf }[/math] can then be obtained by setting [math]\displaystyle{ \eta =L(V) }[/math] in Eqn. (eyring):


[math]\displaystyle{ \eta =L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}} }[/math]


or:


[math]\displaystyle{ \frac{1}{\eta }=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} }[/math]


Substituting for [math]\displaystyle{ \eta }[/math] into Eqn. (Eyrpdf):


[math]\displaystyle{ f(t,V)=\beta \cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta -1}}{{e}^{-{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}} }[/math]

Eyring-Weibull Statistical Properties Summary

Mean or MTTF

The mean, [math]\displaystyle{ \overline{T} }[/math], or Mean Time To Failure (MTTF) for the Eyring-Weibull model is given by:


[math]\displaystyle{ \overline{T}=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}\cdot \Gamma \left( \frac{1}{\beta }+1 \right) }[/math]

where [math]\displaystyle{ \Gamma \left( \tfrac{1}{\beta }+1 \right) }[/math] is the gamma function evaluated at the value of [math]\displaystyle{ \left( \tfrac{1}{\beta }+1 \right) }[/math] .


Median


The median, [math]\displaystyle{ \breve{T} }[/math] for the Eyring-Weibull model is given by:


[math]\displaystyle{ \breve{T}=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}{{\left( \ln 2 \right)}^{\tfrac{1}{\beta }}} }[/math]

Mode


The mode, [math]\displaystyle{ \tilde{T}, }[/math] for the Eyring-Weibull model is given by:


[math]\displaystyle{ \tilde{T}=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}{{\left( 1-\frac{1}{\beta } \right)}^{\tfrac{1}{\beta }}} }[/math]


Standard Deviation


The standard deviation, [math]\displaystyle{ {{\sigma }_{T}}, }[/math] for the Eyring-Weibull model is given by:


[math]\displaystyle{ {{\sigma }_{T}}=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}\cdot \sqrt{\Gamma \left( \frac{2}{\beta }+1 \right)-{{\left( \Gamma \left( \frac{1}{\beta }+1 \right) \right)}^{2}}} }[/math]


Eyring-Weibull Reliability Function


The Eyring-Weibull reliability function is given by:


[math]\displaystyle{ R(T,V)={{e}^{-{{\left( V\cdot T\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}} }[/math]


Conditional Reliability Function


The Eyring-Weibull conditional reliability function at a specified stress level is given by:

[math]\displaystyle{ R(T,t,V)=\frac{R(T+t,V)}{R(T,V)}=\frac{{{e}^{-{{\left( \left( T+t \right)\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}}}{{{e}^{-{{\left( V\cdot T\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}}} }[/math]


or:


[math]\displaystyle{ R(T,t,V)={{e}^{-\left[ {{\left( \left( T+t \right)\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}-{{\left( V\cdot T\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }} \right]}} }[/math]


Reliable Life


For the Eyring-Weibull model, the reliable life, [math]\displaystyle{ {{t}_{R}} }[/math] , of a unit for a specified reliability and starting the mission at age zero is given by:


[math]\displaystyle{ {{t}_{R}}=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}{{\left\{ -\ln \left[ R\left( {{T}_{R}},V \right) \right] \right\}}^{\tfrac{1}{\beta }}} }[/math]


Eyring-Weibull Failure Rate Function


The Eyring-Weibull failure rate function, [math]\displaystyle{ \lambda (T) }[/math] , is given by:

[math]\displaystyle{ \lambda \left( T,V \right)=\frac{f\left( T,V \right)}{R\left( T,V \right)}=\beta {{\left( T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta -1}} }[/math]


Parameter Estimation


Maximum Likelihood Estimation Method


The Eyring-Weibull log-likelihood function is composed of two summation portions:


[math]\displaystyle{ \begin{align} & \ln (L)= & \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \beta \cdot {{V}_{i}}\cdot {{e}^{A-\tfrac{B}{{{V}_{i}}}}}{{\left( {{T}_{i}}{{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta -1}}{{e}^{-{{\left( {{T}_{i}}{{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }}}} \right] \\ & & -\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }{{\left( {{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}}T_{i}^{\prime } \right)}^{\beta }}+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }] \end{align} }[/math]


where:



[math]\displaystyle{ R_{Li}^{\prime \prime }={{e}^{-{{\left( T_{Li}^{\prime \prime }{{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }}}} }[/math]



[math]\displaystyle{ R_{Ri}^{\prime \prime }={{e}^{-{{\left( T_{Ri}^{\prime \prime }{{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }}}} }[/math]


and:


[math]\displaystyle{ {{F}_{e}} }[/math] is the number of groups of exact times-to-failure data points.
[math]\displaystyle{ {{N}_{i}} }[/math] is the number of times-to-failure data points in the [math]\displaystyle{ {{i}^{th}} }[/math] time-to-failure data group.
[math]\displaystyle{ \beta }[/math] is the Weibull shape parameter (unknown, the first of three parameters to be estimated).
[math]\displaystyle{ A }[/math] is the Eyring parameter (unknown, the second of three parameters to be estimated).
[math]\displaystyle{ B }[/math] is the second Eyring parameter (unknown, the third of three parameters to be estimated).
[math]\displaystyle{ {{V}_{i}} }[/math] is the stress level of the [math]\displaystyle{ {{i}^{th}} }[/math] group.
[math]\displaystyle{ {{T}_{i}} }[/math] is the exact failure time of the [math]\displaystyle{ {{i}^{th}} }[/math] group.
[math]\displaystyle{ S }[/math] is the number of groups of suspension data points.
[math]\displaystyle{ N_{i}^{\prime } }[/math] is the number of suspensions in the [math]\displaystyle{ {{i}^{th}} }[/math] group of suspension data points.
[math]\displaystyle{ T_{i}^{\prime } }[/math] is the running time of the [math]\displaystyle{ {{i}^{th}} }[/math] suspension data group.
[math]\displaystyle{ FI }[/math] is the number of interval data groups.
[math]\displaystyle{ N_{i}^{\prime \prime } }[/math] is the number of intervals in the i [math]\displaystyle{ ^{th} }[/math] group of data intervals.
[math]\displaystyle{ T_{Li}^{\prime \prime } }[/math] is the beginning of the i [math]\displaystyle{ ^{th} }[/math] interval.
[math]\displaystyle{ T_{Ri}^{\prime \prime } }[/math] is the ending of the i [math]\displaystyle{ ^{th} }[/math] interval.


The solution (parameter estimates) will be found by solving for the parameters [math]\displaystyle{ \beta , }[/math] [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] so that [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial \beta }=0, }[/math] [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial A}=0 }[/math] and [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial B}=0 }[/math]

where:



[math]\displaystyle{ \begin{align} & \frac{\partial \Lambda }{\partial A}= & \beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}-\beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}{{\left( {{T}_{i}}{{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }} \\ & & -\beta \underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }{{\left( T_{i}^{\prime }{{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }} \\ & & \overset{FI}{\mathop{-\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{\beta V_{i}^{\beta }{{e}^{A\beta -\tfrac{B\beta }{{{V}_{i}}}}}\left[ {{(T_{Li}^{\prime \prime })}^{\beta }}R_{Li}^{\prime \prime }-{{(T_{Ri}^{\prime \prime })}^{\beta }}R_{Ri}^{\prime \prime } \right]}{R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }} \end{align} }[/math]



[math]\displaystyle{ \begin{align} & \frac{\partial \Lambda }{\partial B}= & -\beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\frac{1}{{{V}_{i}}}+\beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\frac{1}{{{V}_{i}}}{{\left( {{T}_{i}}{{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }} \\ & & +\beta \underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }\frac{1}{{{V}_{i}}}{{\left( T_{i}^{\prime }{{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }} \\ & & +\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{\beta V_{i}^{(\beta -1)}{{e}^{A\beta -\tfrac{B\beta }{{{V}_{i}}}}}\left[ {{(T_{Li}^{\prime \prime })}^{\beta }}R_{Li}^{\prime \prime }-{{(T_{Ri}^{\prime \prime })}^{\beta }}R_{Ri}^{\prime \prime } \right]}{R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }} \end{align} }[/math]


[math]\displaystyle{ \frac{\partial \Lambda}{\partial \beta}=\frac{1}{\beta}\sum_{i=1}^{F_e} N_i\frac{1}{V_i}+\sum_{i=1}^{F_e} N_i ln\left(T_iV_i e^{A-\tfrac{B}{V_i}}\right) }[/math]
[math]\displaystyle{ -\sum_{i=1}^{F_e} N_i\left(T_iV_i e^{A-\tfrac{B}{V_i}}\right)^\beta ln\left(T_iV)i e^{A-\tfrac{B}{V_i}}\right) }[/math]
[math]\displaystyle{ -\sum_{i=1}^S N_i^'\left(T_i^'V_I e^{A-\tfrac{B}{V_i}}\right)^\beta ln\left(T_iV)i e^{A-\tfrac{B}{V_i}}\right) }[/math]
[math]\displaystyle{ -\sum_{i=1}^{FI} N_i^{''}V_i e^{A-\tfrac{B}{V_i}}\frac{R_{Li}^{''} T_{Li}^{''}\left(ln(T_{Li}^' V_i)+A-\tfrac{B}{V_i}\right)-R_{Ri}^{''} T_{Ri}^{''}\left(ln(T_{Ri}^{''} V_i)+A-\tfrac{B}{V_i}\right)}{R_{L_i}^{''}-F_{Ri}^{''}} }[/math]