Template:Alta a-e.e-e

From ReliaWiki
Revision as of 22:32, 12 January 2012 by Nicolette Young (talk | contribs) (Created page with '==Eyring-Exponential== <br> The <math>pdf</math> of the 1-parameter exponential distribution is given by: <br> ::<math>f(t)=\lambda \cdot {{e}^{-\lambda \cdot t}}</math> <br> …')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Eyring-Exponential


The [math]\displaystyle{ pdf }[/math] of the 1-parameter exponential distribution is given by:


[math]\displaystyle{ f(t)=\lambda \cdot {{e}^{-\lambda \cdot t}} }[/math]


It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:


[math]\displaystyle{ \lambda =\frac{1}{m} }[/math]


thus:


[math]\displaystyle{ f(t)=\frac{1}{m}\cdot {{e}^{-\tfrac{t}{m}}} }[/math]


The Eyring-exponential model [math]\displaystyle{ pdf }[/math] can then be obtained by setting [math]\displaystyle{ m=L(V) }[/math] in Eqn. (eyring):


[math]\displaystyle{ m=L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}} }[/math]


and substituting for [math]\displaystyle{ m }[/math] in Eqn. (pdfexpm2):


[math]\displaystyle{ f(t,V)=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}\cdot t}} }[/math]


Eyring-Exponential Statistical Properties Summary

Mean or MTTF


The mean, [math]\displaystyle{ \overline{T}, }[/math] or Mean Time To Failure (MTTF) for the Eyring-exponential is given by:


[math]\displaystyle{ \begin{align} & \overline{T}= & \mathop{}_{0}^{\infty }t\cdot f(t,V)dt=\mathop{}_{0}^{\infty }t\cdot V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-tV{{e}^{\left( A-\tfrac{B}{V} \right)}}}}dt \\ & = & \frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}} \end{align} }[/math]

Median


The median, [math]\displaystyle{ \breve{T}, }[/math] for the Eyring-exponential model is given by:


[math]\displaystyle{ \breve{T}=0.693\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}} }[/math]


Mode


The mode, [math]\displaystyle{ \tilde{T}, }[/math] for the Eyring-exponential model is [math]\displaystyle{ \tilde{T}=0. }[/math]

Standard Deviation


The standard deviation, [math]\displaystyle{ {{\sigma }_{T}} }[/math], for the Eyring-exponential model is given by:

[math]\displaystyle{ {{\sigma }_{T}}=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}} }[/math]


Eyring-Exponential Reliability Function


The Eyring-exponential reliability function is given by:


[math]\displaystyle{ R(T,V)={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}} }[/math]


This function is the complement of the Eyring-exponential cumulative distribution function or:


[math]\displaystyle{ R(T,V)=1-Q(T,V)=1-\mathop{}_{0}^{T}f(T,V)dT }[/math]


and:


[math]\displaystyle{ R(T,V)=1-\mathop{}_{0}^{T}V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}dT={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}} }[/math]

Conditional Reliability


The conditional reliability function for the Eyring-exponential model is given by:

[math]\displaystyle{ R(T,t,V)=\frac{R(T+t,V)}{R(T,V)}=\frac{{{e}^{-\lambda (T+t)}}}{{{e}^{-\lambda T}}}={{e}^{-t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}} }[/math]


Reliable Life


For the Eyring-exponential model, the reliable life, or the mission duration for a desired reliability goal, [math]\displaystyle{ {{t}_{R,}} }[/math] is given by:

[math]\displaystyle{ R({{t}_{R}},V)={{e}^{-{{t}_{R}}\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}} }[/math]


[math]\displaystyle{ \ln [R({{t}_{R}},V)]=-{{t}_{R}}\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} }[/math]


or:


[math]\displaystyle{ {{t}_{R}}=-\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}\ln [R({{t}_{R}},V)] }[/math]

Parameter Estimation


Maximum Likelihood Estimation Method


The complete exponential log-likelihood function of the Eyring model is composed of two summation portions:


[math]\displaystyle{ \begin{align} & \ln (L)= & \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ {{V}_{i}}\cdot {{e}^{\left( A-\tfrac{B}{{{V}_{i}}} \right)}}{{e}^{-{{V}_{i}}\cdot {{e}^{\left( A-\tfrac{B}{{{V}_{i}}} \right)}}\cdot {{T}_{i}}}} \right] \\ & & -\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\cdot {{V}_{i}}\cdot {{e}^{\left( A-\tfrac{B}{{{V}_{i}}} \right)}}\cdot T_{i}^{\prime }+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }] \end{align} }[/math]


where:


[math]\displaystyle{ R_{Li}^{\prime \prime }={{e}^{-T_{Li}^{\prime \prime }{{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}}}} }[/math]


[math]\displaystyle{ R_{Ri}^{\prime \prime }={{e}^{-T_{Ri}^{\prime \prime }{{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}}}} }[/math]


and:


[math]\displaystyle{ {{F}_{e}} }[/math] is the number of groups of exact times-to-failure data points.
[math]\displaystyle{ {{N}_{i}} }[/math] is the number of times-to-failure in the [math]\displaystyle{ {{i}^{th}} }[/math] time-to-failure data group.
[math]\displaystyle{ {{V}_{i}} }[/math] is the stress level of the [math]\displaystyle{ {{i}^{th}} }[/math] group.
[math]\displaystyle{ A }[/math] is the Eyring parameter (unknown, the first of two parameters to be estimated).
[math]\displaystyle{ B }[/math] is the second Eyring parameter (unknown, the second of two parameters to be estimated).
[math]\displaystyle{ {{T}_{i}} }[/math] is the exact failure time of the [math]\displaystyle{ {{i}^{th}} }[/math] group.
[math]\displaystyle{ S }[/math] is the number of groups of suspension data points.
[math]\displaystyle{ N_{i}^{\prime } }[/math] is the number of suspensions in the [math]\displaystyle{ {{i}^{th}} }[/math] group of suspension data points.
[math]\displaystyle{ T_{i}^{\prime } }[/math] is the running time of the [math]\displaystyle{ {{i}^{th}} }[/math] suspension data group.
[math]\displaystyle{ FI }[/math] is the number of interval data groups.
[math]\displaystyle{ N_{i}^{\prime \prime } }[/math] is the number of intervals in the i [math]\displaystyle{ ^{th} }[/math] group of data intervals.
[math]\displaystyle{ T_{Li}^{\prime \prime } }[/math] is the beginning of the i [math]\displaystyle{ ^{th} }[/math] interval.
[math]\displaystyle{ T_{Ri}^{\prime \prime } }[/math] is the ending of the i [math]\displaystyle{ ^{th} }[/math] interval.
The solution (parameter estimates) will be found by solving for the parameters [math]\displaystyle{ \widehat{A} }[/math] and [math]\displaystyle{ \widehat{B} }[/math] so that [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial A}=0 }[/math] and [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial B}=0 }[/math] where:



[math]\displaystyle{ \begin{align} & \frac{\partial \Lambda }{\partial A}= & \underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\left( 1-{{V}_{i}}\cdot {{e}^{\left( A-\tfrac{B}{{{V}_{i}}} \right)}}{{T}_{i}} \right)-\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }{{V}_{i}}\cdot {{e}^{\left( A-\tfrac{B}{{{V}_{i}}} \right)}}T_{i}^{\prime } \\ & & \overset{FI}{\mathop{\underset{i=1}{\mathop{-\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{\left( T_{Li}^{\prime \prime }R_{Li}^{\prime \prime }-T_{Ri}^{\prime \prime }R_{Ri}^{\prime \prime } \right){{V}_{i}}{{e}^{A-\tfrac{B}{{{V}_{i}}}}}}{R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }} \end{align} }[/math]


[math]\displaystyle{ \begin{align} & \frac{\partial \Lambda }{\partial B}= & \underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\left[ {{e}^{\left( A-\tfrac{B}{{{V}_{i}}} \right)}}{{T}_{i}}-\frac{1}{{{V}_{i}}} \right]+\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\cdot {{e}^{\left( A-\tfrac{B}{{{V}_{i}}} \right)}}T_{i}^{\prime } \\ & & \overset{FI}{\mathop{\underset{i=1}{\mathop{+\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{\left( T_{Li}^{\prime \prime }R_{Li}^{\prime \prime }-T_{Ri}^{\prime \prime }R_{Ri}^{\prime \prime } \right){{e}^{A-\tfrac{B}{{{V}_{i}}}}}}{R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }} \end{align} }[/math]