Optimum Overhaul Example

From ReliaWiki
Revision as of 18:37, 4 February 2014 by Kate Racaza (talk | contribs)
Jump to navigation Jump to search
RGA Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at RGA examples and RGA reference examples.




This example appears in the Reliability Growth and Repairable System Analysis Reference book.


Field data have been collected for a system that begins its wearout phase at time zero. The start time for each system is equal to zero and the end time for each system is 10,000 miles. Each system is scheduled to undergo an overhaul after a certain number of miles. It has been determined that the cost of an overhaul is four times more expensive than a repair. The table below presents the data. Do the following:

1) Estimate the parameters of the Power Law model.
2) Determine the optimum overhaul interval.
3) If [math]\displaystyle{ \beta \lt 1\,\! }[/math], would it be cost-effective to implement an overhaul policy?
Field data
System 1 System 2 System 3
1006.3 722.7 619.1
2261.2 1950.9 1519.1
2367 3259.6 2956.6
2615.5 4733.9 3114.8
2848.1 5105.1 3657.9
4073 5624.1 4268.9
5708.1 5806.3 6690.2
6464.1 5855.6 6803.1
6519.7 6325.2 7323.9
6799.1 6999.4 7501.4
7342.9 7084.4 7641.2
7736 7105.9 7851.6
8246.1 7290.9 8147.6
7614.2 8221.9
8332.1 9560.5
8368.5 9575.4
8947.9
9012.3
9135.9
9147.5
9601

Solution

1) The next figure shows the estimated Power Law parameters.
Entered data and the estimated Power Law parameters.
2) The QCP can be used to calculate the optimum overhaul interval, as shown next.
The optimum overhaul interval.
3) Since [math]\displaystyle{ \beta \lt 1\,\! }[/math] then the systems are not wearing out and it would not be cost-effective to implement an overhaul policy. An overhaul policy makes sense only if the systems are wearing out. Otherwise, an overhauled unit would have the same probability of failing as a unit that was not overhauled.