Tensile Components Example

From ReliaWiki
Jump to navigation Jump to search

Tensile Components Example

A tensile component of a landing gear was put through an accelerated reliability test to determine whether the life goal would be achieved under the designed-in load. Fifteen units, N=15, were tested at three different shock loads. The component was designed for a peak shock load of 50 kips with an estimated return of 10% of the population by 10,000 landings. Using the inverse power law lognormal model, determine whether the design life was met.


Failure, in Cycles Shock Load, kips
1855 73
2158 73
2425 73
2736 73
3206 73
614 95
770 95
781 95
890 95
1055 95
152 128
162 128
173 128
209 128
216 128


Solution

The data were entered into ALTA, and the following estimates were obtained for the parameters of the IPL-lognormal model:


[math]\displaystyle{ \begin{align} Std=\ & 0.179080 \\ K=\ & 8.953055E-13 \\ n=\ & 4.638882 \end{align} }[/math]


The probability plot at each test stress level (73 kips, 95 kips and 123 kips) was then obtained, as shown next.


Probability plots at different shock loads.


In this plot, it can be seen that there is a good agreement between the data and the fitted model. The probability plot at a use stress level of 50 kips is shown next.


The probability plot at a use stress level of 50 kips.


Using the Use Level Probability plot, the cycles-to failure for a 10% probability of failure can be estimated. From the plot, this time is estimated to be [math]\displaystyle{ T(Q=0.10=10%)\approxeq 12,000 }[/math] landings. Another way to obtain life information is by using a Life vs. Stress plot. Once a Life vs. Stress plot is selected, the 10% unreliability (probability of failure) line must be plotted. To do this, click Life Lines... in the plot panel and and select the 10% Unreliability box (or enter 10 in one of the boxes and select the box) in the Specify Life Lines window, as shown next.


Ipl example specify life.gif


In the following plot, the 10% unreliability line is plotted (the first line from the left). For a stress of 50 psi (X-axis) and for the 10% unreliability line, the cycles-to-failure can be obtained by reading the value on the Y-axis. Again, [math]\displaystyle{ T(0.1)\approxeq 12,000 }[/math] landings.


Median Life line (right) and 10% unreliability line (left) vs. stress.


However, a more accurate way to obtain such information is by using the Quick Calculation Pad (QCP) in ALTA. Using the QCP, the life for a 10% probability of failure at 50 kips is estimated to be 11,669.1 cycles (or landings), as shown next.


Ipl example2 qcp.gif


The design criterion of 10,000 landings is met.