Temperature-NonThermal Relationship
Template loop detected: Template:Temperature non-thermal relationship
Appendix 10A: T-NT Confidence Bounds
Approximate Confidence Bounds for the T-NT Exponential
Confidence Bounds on the Mean Life
The mean life for the T-NT model is given by Eqn. (Temp-Volt) by setting [math]\displaystyle{ m=L(V) }[/math] . The upper [math]\displaystyle{ ({{m}_{U}}) }[/math] and lower [math]\displaystyle{ ({{m}_{L}}) }[/math] bounds on the mean life (ML estimate of the mean life) are estimated by:
- [math]\displaystyle{ {{m}_{U}}=\widehat{m}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} }[/math]
- [math]\displaystyle{ {{m}_{L}}=\widehat{m}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} }[/math]
where [math]\displaystyle{ {{K}_{\alpha }} }[/math] is defined by:
- [math]\displaystyle{ \alpha =\frac{1}{\sqrt{2\pi }}\int_{{{K}_{\alpha }}}^{\infty }{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }}) }[/math]
If [math]\displaystyle{ \delta }[/math] is the confidence level, then [math]\displaystyle{ \alpha =\tfrac{1-\delta }{2} }[/math] for the two-sided bounds, and [math]\displaystyle{ \alpha =1-\delta }[/math] for the one-sided bounds. The variance of [math]\displaystyle{ \widehat{m} }[/math] is given by:
- [math]\displaystyle{ \begin{align} Var(\widehat{m})= & {{\left( \frac{\partial m}{\partial B} \right)}^{2}}Var(\widehat{B})+{{\left( \frac{\partial m}{\partial C} \right)}^{2}}Var(\widehat{C}) +{{\left( \frac{\partial m}{\partial n} \right)}^{2}}Var(\widehat{b}) +2\left( \frac{\partial m}{\partial B} \right)\left( \frac{\partial m}{\partial C} \right)Cov(\widehat{B},\widehat{C}) \\ & +2\left( \frac{\partial m}{\partial B} \right)\left( \frac{\partial m}{\partial n} \right)Cov(\widehat{B},\widehat{n}) +2\left( \frac{\partial m}{\partial C} \right)\left( \frac{\partial m}{\partial n} \right)Cov(\widehat{C},\widehat{n}) \end{align} }[/math]
or:
- [math]\displaystyle{ \begin{align} Var(\widehat{m})= & \frac{1}{{{U}^{2\widehat{n}}}}{{e}^{2\tfrac{\widehat{B}}{V}}}[\frac{{{\widehat{C}}^{2}}}{{{V}^{2}}}Var(\widehat{B})+Var(\widehat{C}) +{{\widehat{C}}^{2}}{{\left( \ln (U) \right)}^{2}}Var(\widehat{n}) +\frac{2\widehat{C}}{V}Cov(\widehat{B},\widehat{C}) \\ & -\frac{2{{\widehat{C}}^{2}}\ln (U)}{V}Cov(\widehat{B},\widehat{n}) -2\widehat{C}\ln (U)Cov(\widehat{C},\widehat{n})] \end{align} }[/math]
The variances and covariance of [math]\displaystyle{ B, }[/math] [math]\displaystyle{ C }[/math] and [math]\displaystyle{ n }[/math] are estimated from the local Fisher matrix (evaluated at [math]\displaystyle{ \widehat{B}, }[/math] [math]\displaystyle{ \widehat{C}, }[/math] [math]\displaystyle{ \widehat{n}) }[/math] as follows:
- [math]\displaystyle{ \left[ \begin{matrix} Var(\widehat{B}) & Cov(\widehat{B},\widehat{C}) & Cov(\widehat{B},\widehat{n}) \\ Cov(\widehat{C},\widehat{B}) & Var(\widehat{C}) & Cov(\widehat{C},\widehat{n}) \\ Cov(\widehat{n},\widehat{B}) & Cov(\widehat{n},\widehat{C}) & Var(\widehat{n}) \\ \end{matrix} \right]={{\left[ F \right]}^{-1}} }[/math]
- where,
- [math]\displaystyle{ F=\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{B}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{C}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right]. }[/math]
Confidence Bounds on Reliability
The bounds on reliability at a given time, [math]\displaystyle{ T }[/math] , are estimated by:
- [math]\displaystyle{ \begin{align} & {{R}_{U}}= & {{e}^{-\tfrac{T}{{{m}_{U}}}}} \\ & {{R}_{L}}= & {{e}^{-\tfrac{T}{{{m}_{L}}}}} \end{align} }[/math]
Confidence Bounds on Time
The bounds on time for a given reliability (ML estimate of time) are estimated by first solving the reliability function with respect to time:
- [math]\displaystyle{ \widehat{T}=-\widehat{m}\cdot \ln (R) }[/math]
The corresponding confidence bounds are estimated from:
- [math]\displaystyle{ \begin{align} & {{T}_{U}}= & -{{m}_{U}}\cdot \ln (R) \\ & {{T}_{L}}= & -{{m}_{L}}\cdot \ln (R) \end{align} }[/math]
Approximate Confidence Bounds for the T-NT Weibull
Bounds on the Parameters
Using the same approach as previously discussed ( [math]\displaystyle{ \widehat{\beta } }[/math] and
[math]\displaystyle{ \widehat{C} }[/math] positive parameters):
- [math]\displaystyle{ \begin{align} & {{\beta }_{U}}= & \widehat{\beta }\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{\beta })}}{\widehat{\beta }}}} \\ & {{\beta }_{L}}= & \widehat{\beta }\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{\beta })}}{\widehat{\beta }}}} \end{align} }[/math]
- [math]\displaystyle{ \begin{align} & {{B}_{U}}= & \widehat{B}+{{K}_{\alpha }}\sqrt{Var(\widehat{B})} \\ & {{B}_{L}}= & \widehat{B}-{{K}_{\alpha }}\sqrt{Var(\widehat{A})} \end{align} }[/math]
- [math]\displaystyle{ \begin{align} & {{C}_{U}}= & \widehat{C}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{C})}}{\widehat{C}}}} \\ & {{C}_{L}}= & \widehat{C}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{C})}}{\widehat{C}}}} \end{align} }[/math]
and:
- [math]\displaystyle{ \begin{align} & {{n}_{U}}= & \widehat{n}+{{K}_{\alpha }}\sqrt{Var(\widehat{n})} \\ & {{n}_{L}}= & \widehat{n}-{{K}_{\alpha }}\sqrt{Var(\widehat{n})} \end{align} }[/math]
The variances and covariances of [math]\displaystyle{ \beta , }[/math] [math]\displaystyle{ B, }[/math] [math]\displaystyle{ C, }[/math] and [math]\displaystyle{ n }[/math] are estimated from the Fisher matrix (evaluated at [math]\displaystyle{ \widehat{\beta }, }[/math] [math]\displaystyle{ \widehat{B}, }[/math] [math]\displaystyle{ \widehat{C}, }[/math] [math]\displaystyle{ \widehat{n}) }[/math] as follows:
- [math]\displaystyle{ \left[ \begin{matrix} Var(\widehat{\beta }) & Cov(\widehat{\beta },\widehat{B}) & Cov(\widehat{\beta },\widehat{C}) & Cov(\widehat{\beta },\widehat{n}) \\ Cov(\widehat{B},\widehat{\beta }) & Var(\widehat{B}) & Cov(\widehat{B},\widehat{C}) & Cov(\widehat{B},\widehat{n}) \\ Cov(\widehat{C},\widehat{\beta }) & Cov(\widehat{C},\widehat{B}) & Var(\widehat{C}) & Cov(\widehat{C},\widehat{n}) \\ Cov(\widehat{n},\widehat{\beta }) & Cov(\widehat{n},\widehat{B}) & Cov(\widehat{n},\widehat{C}) & Var(\widehat{n}) \\ \end{matrix} \right]={{\left[ F \right]}^{-1}} }[/math]
where:
- [math]\displaystyle{ F=\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{B}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{C}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right] }[/math]
Confidence Bounds on Reliability
The reliability function (ML estimate) for the T-NT Weibull model is given by:
- [math]\displaystyle{ \widehat{R}(T,U,V)={{e}^{-{{\left( \tfrac{{{U}^{\widehat{n}}}{{e}^{-\tfrac{\widehat{B}}{V}}}}{\widehat{C}}T \right)}^{\widehat{\beta }}}}} }[/math]
or:
- [math]\displaystyle{ \widehat{R}(T,U,V)={{e}^{-{{e}^{\ln \left[ {{\left( \tfrac{{{U}^{\widehat{n}}}{{e}^{-\tfrac{\widehat{B}}{V}}}}{\widehat{C}}T \right)}^{\widehat{\beta }}} \right]}}}} }[/math]
- Setting:
- [math]\displaystyle{ \widehat{u}=\ln \left[ {{\left( \frac{{{U}^{\widehat{n}}}{{e}^{-\tfrac{\widehat{B}}{V}}}}{\widehat{C}}T \right)}^{\widehat{\beta }}} \right] }[/math]
or:
- [math]\displaystyle{ \widehat{u}=\widehat{\beta }\left[ \ln (T)-\frac{\widehat{B}}{V}-\ln (\widehat{C})+\widehat{n}\ln (U) \right] }[/math]
The reliability function now becomes:
- [math]\displaystyle{ \widehat{R}(T,U,V)={{e}^{-e\widehat{^{u}}}} }[/math]
The next step is to find the upper and lower bounds on [math]\displaystyle{ u }[/math] :
- [math]\displaystyle{ {{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]
- [math]\displaystyle{ {{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial B} \right)}^{2}}Var(\widehat{B}) +{{\left( \frac{\partial \widehat{u}}{\partial C} \right)}^{2}}Var(\widehat{C})+{{\left( \frac{\partial \widehat{u}}{\partial n} \right)}^{2}}Var(\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{\beta },\widehat{B}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{\beta },\widehat{C}) \\ & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{\beta },\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial B} \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{B},\widehat{C}) +2\left( \frac{\partial \widehat{u}}{\partial B} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{B},\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial C} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{C},\widehat{n}) \end{align} }[/math]
or:
- [math]\displaystyle{ \begin{align} Var(\widehat{u})= & {{\left( \frac{\widehat{u}}{\widehat{\beta }} \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\widehat{\beta }}{V} \right)}^{2}}Var(\widehat{B}) +{{\left( \frac{\widehat{\beta }}{\widehat{C}} \right)}^{2}}Var(\widehat{C})+{{\left( \widehat{\beta }\ln (U) \right)}^{2}}Var(\widehat{n}) -\frac{2\widehat{u}}{V}Cov(\widehat{\beta },\widehat{B})-\frac{2\widehat{u}}{\widehat{C}}Cov(\widehat{\beta },\widehat{C}) \\ & +2\widehat{u}\ln (U)Cov(\widehat{\beta },\widehat{n}) +\frac{2{{\widehat{\beta }}^{2}}}{\widehat{C}V}Cov(\widehat{B},\widehat{C})-\frac{2{{\widehat{\beta }}^{2}}\ln (U)}{V}Cov(\widehat{B},\widehat{n}) -\frac{2{{\widehat{\beta }}^{2}}\ln (U)}{\widehat{C}}Cov(\widehat{C},\widehat{n}) \end{align} }[/math]
The upper and lower bounds on reliability are:
- [math]\displaystyle{ \begin{align} & {{R}_{U}}= & {{e}^{-{{e}^{\left( {{u}_{L}} \right)}}}} \\ & {{R}_{L}}= & {{e}^{-{{e}^{\left( {{u}_{U}} \right)}}}} \end{align} }[/math]
Confidence Bounds on Time
The bounds on time (ML estimate of time) for a given reliability are estimated by first solving the reliability function with respect to time as follows:
- [math]\displaystyle{ \begin{align} \ln (R)=\ & -{{\left( \frac{{{U}^{\widehat{n}}}{{e}^{-\tfrac{\widehat{B}}{V}}}}{\widehat{C}}\widehat{T} \right)}^{\widehat{\beta }}} \\ \ln (-\ln (R))=\ & \widehat{\beta }\left( \ln (\widehat{T})-\frac{\widehat{B}}{V}-\ln (\widehat{C})+\widehat{n}\ln (U) \right) \end{align} }[/math]
or:
- [math]\displaystyle{ \widehat{u}=\frac{1}{\widehat{\beta }}\ln (-\ln (R))+\frac{\widehat{B}}{V}+\ln (\widehat{C})-\widehat{n}\ln (U) }[/math]
where [math]\displaystyle{ \widehat{u}=\ln \widehat{T}. }[/math]
The upper and lower bounds on [math]\displaystyle{ u }[/math] are estimated from:
- [math]\displaystyle{ {{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]
- [math]\displaystyle{ {{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial B} \right)}^{2}}Var(\widehat{B}) +{{\left( \frac{\partial \widehat{u}}{\partial C} \right)}^{2}}Var(\widehat{C})+{{\left( \frac{\partial \widehat{u}}{\partial n} \right)}^{2}}Var(\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{\beta },\widehat{B}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{\beta },\widehat{C}) \\ & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{\beta },\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial B} \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{B},\widehat{C}) +2\left( \frac{\partial \widehat{u}}{\partial B} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{B},\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial C} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{C},\widehat{n}) \end{align} }[/math]
or:
- [math]\displaystyle{ \begin{align} Var(\widehat{u})= & \frac{1}{{{\widehat{\beta }}^{4}}}{{\left[ \ln (-\ln (R)) \right]}^{2}}Var(\widehat{\beta }) +\frac{1}{{{V}^{2}}}Var(\widehat{B})+\frac{1}{{{\widehat{C}}^{2}}}Var(\widehat{C})+{{\left[ \ln (U) \right]}^{2}}Var(\widehat{n}) -\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}V}Cov(\widehat{\beta },\widehat{B}) -\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}\widehat{C}}Cov(\widehat{\beta },\widehat{C}) \\ & +\frac{2\ln (-\ln (R))\ln (U)}{{{\widehat{\beta }}^{2}}}Cov(\widehat{\beta },\widehat{n}) +\frac{2}{\widehat{C}V}Cov(\widehat{B},\widehat{C}) -\frac{2\ln (U)}{V}Cov(\widehat{B},\widehat{n})-\frac{2\ln (U)}{\widehat{C}}Cov(\widehat{C},\widehat{n}) \end{align} }[/math]
The upper and lower bounds on time are then found by:
- [math]\displaystyle{ \begin{align} & {{T}_{U}}= & {{e}^{{{u}_{U}}}} \\ & {{T}_{L}}= & {{e}^{{{u}_{L}}}} \end{align} }[/math]
Approximate Confidence Bounds for the T-NT Lognormal
Bounds on the Parameters
Since the standard deviation, [math]\displaystyle{ {{\widehat{\sigma }}_{{{T}'}}} }[/math] , and [math]\displaystyle{ \widehat{C} }[/math] are positive parameters, [math]\displaystyle{ \ln ({{\widehat{\sigma }}_{{{T}'}}}) }[/math] and [math]\displaystyle{ \ln (\widehat{C}) }[/math] are treated as normally distributed and the bounds are estimated from:
- [math]\displaystyle{ \begin{align} {{\sigma }_{U}}=\ & {{\widehat{\sigma }}_{{{T}'}}}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}} &\text{ (Upper bound)} \\ & & \\ {{\sigma }_{L}}=\ & \frac{{{\widehat{\sigma }}_{{{T}'}}}}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}}} &\text{ (Lower bound)} \end{align} }[/math]
and:
- [math]\displaystyle{ \begin{align} {{C}_{U}}= & \widehat{C}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{C})}}{\widehat{C}}}} &\text{ (Upper bound)} \\ & & \\ {{C}_{L}}= & \frac{\widehat{A}}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{C})}}{\widehat{C}}}}} &\text{ (Lower bound)} \end{align} }[/math]
The lower and upper bounds on [math]\displaystyle{ B }[/math] and [math]\displaystyle{ n }[/math] are estimated from:
- [math]\displaystyle{ \begin{align} & {{B}_{U}}= & \widehat{B}+{{K}_{\alpha }}\sqrt{Var(\widehat{B})}\text{ (Upper bound)} \\ & & \\ & {{B}_{L}}= & \widehat{B}-{{K}_{\alpha }}\sqrt{Var(\widehat{B})}\text{ (Lower bound)} \end{align} }[/math]
and:
- [math]\displaystyle{ \begin{align} & {{n}_{U}}= & \widehat{n}+{{K}_{\alpha }}\sqrt{Var(\widehat{n})}\text{ (Upper bound)} \\ & & \\ & {{n}_{L}}= & \widehat{n}-{{K}_{\alpha }}\sqrt{Var(\widehat{n})}\text{ (Lower bound)} \end{align} }[/math]
The variances and covariances of [math]\displaystyle{ B }[/math] , [math]\displaystyle{ C, }[/math] [math]\displaystyle{ n, }[/math] and [math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math] are estimated from the local Fisher matrix (evaluated at [math]\displaystyle{ \widehat{B}, }[/math] [math]\displaystyle{ \widehat{C}, }[/math] [math]\displaystyle{ \widehat{n} }[/math] , [math]\displaystyle{ {{\widehat{\sigma }}_{{{T}'}}}) }[/math] as follows:
- [math]\displaystyle{ \left( \begin{matrix} Var\left( {{\widehat{\sigma }}_{{{T}'}}} \right) & Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) & Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right) & Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ Cov\left( {{\widehat{\sigma }}_{{{T}'}}},\widehat{B} \right) & Var\left( \widehat{B} \right) & Cov\left( \widehat{B},\widehat{C} \right) & Cov\left( \widehat{B},\widehat{n} \right) \\ Cov\left( {{\widehat{\sigma }}_{{{T}'}}},\widehat{C} \right) & Cov\left( \widehat{C},\widehat{B} \right) & Var\left( \widehat{C} \right) & Cov\left( \widehat{C},\widehat{n} \right) \\ Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) & Cov\left( \widehat{n},\widehat{B} \right) & Cov\left( \widehat{n},\widehat{C} \right) & Var\left( \widehat{n} \right) \\ \end{matrix} \right)={{\left[ F \right]}^{-1}} }[/math]
- where:
- [math]\displaystyle{ F=\left( \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial \sigma _{{{T}'}}^{2}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{B}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{C}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right) }[/math]
Bounds on Reliability
The reliability of the lognormal distribution is given by:
- [math]\displaystyle{ R({T}',U,V;B,C,n,{{\sigma }_{{{T}'}}})=\int_{{{T}'}}^{\infty }\frac{1}{{{\widehat{\sigma }}_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\ln (\widehat{C})+\widehat{n}\ln ({{U}_{i}})-\tfrac{\widehat{B}}{{{V}_{i}}}}{{{\widehat{\sigma }}_{{{T}'}}}} \right)}^{2}}}}dt }[/math]
Let [math]\displaystyle{ \widehat{z}(t,U,V;B,C,n,{{\sigma }_{T}})=\tfrac{t-\ln (\widehat{C})+\widehat{n}\ln (U)-\tfrac{\widehat{B}}{V}}{{{\widehat{\sigma }}_{{{T}'}}}}, }[/math] then [math]\displaystyle{ \tfrac{d\widehat{z}}{dt}=\tfrac{1}{{{\widehat{\sigma }}_{{{T}'}}}}. }[/math]
For [math]\displaystyle{ t={T}' }[/math] , [math]\displaystyle{ \widehat{z}=\tfrac{{T}'-\ln (\widehat{C})+\widehat{n}\ln (U)-\tfrac{\widehat{B}}{V}}{{{\widehat{\sigma }}_{{{T}'}}}} }[/math] , and for [math]\displaystyle{ t=\infty , }[/math] [math]\displaystyle{ \widehat{z}=\infty . }[/math]
The above equation then becomes:
- [math]\displaystyle{ R(\widehat{z})=\int_{\widehat{z}({T}',U,V)}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz }[/math]
The bounds on [math]\displaystyle{ z }[/math] are estimated from:
- [math]\displaystyle{ \begin{align} & {{z}_{U}}= & \widehat{z}+{{K}_{\alpha }}\sqrt{Var(\widehat{z})} \\ & {{z}_{L}}= & \widehat{z}-{{K}_{\alpha }}\sqrt{Var(\widehat{z})} \end{align} }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\widehat{z})= & \left( \frac{\partial \widehat{z}}{\partial B} \right)_{\widehat{B}}^{2}Var(\widehat{B})+\left( \frac{\partial \widehat{z}}{\partial C} \right)_{\widehat{C}}^{2}Var(\widehat{C}) +\left( \frac{\partial \widehat{z}}{\partial n} \right)_{\widehat{b}}^{2}Var(\widehat{n})+\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)_{{{\widehat{\sigma }}_{{{T}'}}}}^{2}Var({{\widehat{\sigma }}_{{{T}'}}}) +2{{\left( \frac{\partial \widehat{z}}{\partial B} \right)}_{\widehat{B}}}{{\left( \frac{\partial \widehat{z}}{\partial C} \right)}_{\widehat{C}}}Cov\left( \widehat{B},\widehat{C} \right) \\ & +2{{\left( \frac{\partial \widehat{z}}{\partial B} \right)}_{\widehat{B}}}{{\left( \frac{\partial \widehat{z}}{\partial b} \right)}_{\widehat{n}}}Cov\left( \widehat{B},\widehat{n} \right) +2{{\left( \frac{\partial \widehat{z}}{\partial C} \right)}_{\widehat{C}}}{{\left( \frac{\partial \widehat{z}}{\partial n} \right)}_{\widehat{n}}}Cov\left( \widehat{C},\widehat{n} \right) +2{{\left( \frac{\partial \widehat{z}}{\partial B} \right)}_{\widehat{B}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ & +2{{\left( \frac{\partial \widehat{z}}{\partial C} \right)}_{\widehat{C}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right) +2{{\left( \frac{\partial \widehat{z}}{\partial n} \right)}_{\widehat{n}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]
or:
- [math]\displaystyle{ \begin{align} Var(\widehat{z})= & \frac{1}{\widehat{\sigma }_{{{T}'}}^{2}}[\frac{1}{{{V}^{2}}}Var(\widehat{B})+\frac{1}{{{C}^{2}}}Var(\widehat{C})+\ln {{(U)}^{2}}Var(\widehat{n})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) +\frac{2}{C\cdot V}Cov\left( \widehat{B},\widehat{C} \right)-\frac{2\ln (U)}{V}Cov\left( \widehat{B},\widehat{n} \right) \\ & -\frac{2\ln (U)}{C}Cov\left( \widehat{C},\widehat{n} \right)+\frac{2\widehat{z}}{V}Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) +\frac{2\widehat{z}}{C}Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right)-2\widehat{z}\ln (U)Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right)] \end{align} }[/math]
The upper and lower bounds on reliability are:
- [math]\displaystyle{ \begin{align} & {{R}_{U}}= & \int_{{{z}_{L}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Upper bound)} \\ & {{R}_{L}}= & \int_{{{z}_{U}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Lower bound)} \end{align} }[/math]
Confidence Bounds on Time
The bounds around time for a given lognormal percentile (unreliability) are estimated by first solving the reliability equation with respect to time, as follows:
- [math]\displaystyle{ {T}'(U,V;\widehat{B},\widehat{C},\widehat{n},{{\widehat{\sigma }}_{{{T}'}}})=\ln (\widehat{C})+\widehat{n}\ln (U)-\frac{\widehat{B}}{V}+z\cdot {{\widehat{\sigma }}_{{{T}'}}} }[/math]
where:
- [math]\displaystyle{ \begin{align} {T}'(U,V;\widehat{A},\widehat{\phi },\widehat{b},{{\widehat{\sigma }}_{{{T}'}}})=\ & \ln (T) \\ z=\ & {{\Phi }^{-1}}\left[ F({T}') \right] \end{align} }[/math]
and:
- [math]\displaystyle{ \Phi (z)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{z({T}',U,V)}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz }[/math]
The next step is to calculate the variance of [math]\displaystyle{ {T}'(U,V;\widehat{B},\widehat{C},\widehat{n},{{\widehat{\sigma }}_{{{T}'}}}) }[/math] :
- [math]\displaystyle{ \begin{align} Var({T}')= & {{\left( \frac{\partial {T}'}{\partial B} \right)}^{2}}Var(\widehat{B})+{{\left( \frac{\partial {T}'}{\partial C} \right)}^{2}}Var(\widehat{C}) +{{\left( \frac{\partial {T}'}{\partial n} \right)}^{2}}Var(\widehat{n})+{{\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial C} \right)Cov\left( \widehat{B},\widehat{C} \right) \\ & +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial n} \right)Cov\left( \widehat{B},\widehat{n} \right) +2\left( \frac{\partial {T}'}{\partial C} \right)\left( \frac{\partial {T}'}{\partial n} \right)Cov\left( \widehat{C},\widehat{n} \right) +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ & +2\left( \frac{\partial {T}'}{\partial C} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right) +2\left( \frac{\partial {T}'}{\partial n} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]
or:
The upper and lower bounds are then found by:
- [math]\displaystyle{ \begin{align} & T_{U}^{\prime }= & \ln {{T}_{U}}={T}'+{{K}_{\alpha }}\sqrt{Var({T}')} \\ & T_{L}^{\prime }= & \ln {{T}_{L}}={T}'-{{K}_{\alpha }}\sqrt{Var({T}')} \end{align} }[/math]
Solving for [math]\displaystyle{ {{T}_{U}} }[/math] and [math]\displaystyle{ {{T}_{L}} }[/math] yields:
- [math]\displaystyle{ \begin{align} & {{T}_{U}}= & {{e}^{T_{U}^{\prime }}}\text{ (Upper bound)} \\ & {{T}_{L}}= & {{e}^{T_{L}^{\prime }}}\text{ (Lower bound)} \end{align} }[/math]
Appendix 10A: T-NT Confidence Bounds
Approximate Confidence Bounds for the T-NT Exponential
Confidence Bounds on the Mean Life
The mean life for the T-NT model is given by Eqn. (Temp-Volt) by setting [math]\displaystyle{ m=L(V) }[/math] . The upper [math]\displaystyle{ ({{m}_{U}}) }[/math] and lower [math]\displaystyle{ ({{m}_{L}}) }[/math] bounds on the mean life (ML estimate of the mean life) are estimated by:
- [math]\displaystyle{ {{m}_{U}}=\widehat{m}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} }[/math]
- [math]\displaystyle{ {{m}_{L}}=\widehat{m}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} }[/math]
where [math]\displaystyle{ {{K}_{\alpha }} }[/math] is defined by:
- [math]\displaystyle{ \alpha =\frac{1}{\sqrt{2\pi }}\int_{{{K}_{\alpha }}}^{\infty }{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }}) }[/math]
If [math]\displaystyle{ \delta }[/math] is the confidence level, then [math]\displaystyle{ \alpha =\tfrac{1-\delta }{2} }[/math] for the two-sided bounds, and [math]\displaystyle{ \alpha =1-\delta }[/math] for the one-sided bounds. The variance of [math]\displaystyle{ \widehat{m} }[/math] is given by:
- [math]\displaystyle{ \begin{align} Var(\widehat{m})= & {{\left( \frac{\partial m}{\partial B} \right)}^{2}}Var(\widehat{B})+{{\left( \frac{\partial m}{\partial C} \right)}^{2}}Var(\widehat{C}) +{{\left( \frac{\partial m}{\partial n} \right)}^{2}}Var(\widehat{b}) +2\left( \frac{\partial m}{\partial B} \right)\left( \frac{\partial m}{\partial C} \right)Cov(\widehat{B},\widehat{C}) \\ & +2\left( \frac{\partial m}{\partial B} \right)\left( \frac{\partial m}{\partial n} \right)Cov(\widehat{B},\widehat{n}) +2\left( \frac{\partial m}{\partial C} \right)\left( \frac{\partial m}{\partial n} \right)Cov(\widehat{C},\widehat{n}) \end{align} }[/math]
or:
- [math]\displaystyle{ \begin{align} Var(\widehat{m})= & \frac{1}{{{U}^{2\widehat{n}}}}{{e}^{2\tfrac{\widehat{B}}{V}}}[\frac{{{\widehat{C}}^{2}}}{{{V}^{2}}}Var(\widehat{B})+Var(\widehat{C}) +{{\widehat{C}}^{2}}{{\left( \ln (U) \right)}^{2}}Var(\widehat{n}) +\frac{2\widehat{C}}{V}Cov(\widehat{B},\widehat{C}) \\ & -\frac{2{{\widehat{C}}^{2}}\ln (U)}{V}Cov(\widehat{B},\widehat{n}) -2\widehat{C}\ln (U)Cov(\widehat{C},\widehat{n})] \end{align} }[/math]
The variances and covariance of [math]\displaystyle{ B, }[/math] [math]\displaystyle{ C }[/math] and [math]\displaystyle{ n }[/math] are estimated from the local Fisher matrix (evaluated at [math]\displaystyle{ \widehat{B}, }[/math] [math]\displaystyle{ \widehat{C}, }[/math] [math]\displaystyle{ \widehat{n}) }[/math] as follows:
- [math]\displaystyle{ \left[ \begin{matrix} Var(\widehat{B}) & Cov(\widehat{B},\widehat{C}) & Cov(\widehat{B},\widehat{n}) \\ Cov(\widehat{C},\widehat{B}) & Var(\widehat{C}) & Cov(\widehat{C},\widehat{n}) \\ Cov(\widehat{n},\widehat{B}) & Cov(\widehat{n},\widehat{C}) & Var(\widehat{n}) \\ \end{matrix} \right]={{\left[ F \right]}^{-1}} }[/math]
- where,
- [math]\displaystyle{ F=\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{B}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{C}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right]. }[/math]
Confidence Bounds on Reliability
The bounds on reliability at a given time, [math]\displaystyle{ T }[/math] , are estimated by:
- [math]\displaystyle{ \begin{align} & {{R}_{U}}= & {{e}^{-\tfrac{T}{{{m}_{U}}}}} \\ & {{R}_{L}}= & {{e}^{-\tfrac{T}{{{m}_{L}}}}} \end{align} }[/math]
Confidence Bounds on Time
The bounds on time for a given reliability (ML estimate of time) are estimated by first solving the reliability function with respect to time:
- [math]\displaystyle{ \widehat{T}=-\widehat{m}\cdot \ln (R) }[/math]
The corresponding confidence bounds are estimated from:
- [math]\displaystyle{ \begin{align} & {{T}_{U}}= & -{{m}_{U}}\cdot \ln (R) \\ & {{T}_{L}}= & -{{m}_{L}}\cdot \ln (R) \end{align} }[/math]
Approximate Confidence Bounds for the T-NT Weibull
Bounds on the Parameters
Using the same approach as previously discussed ( [math]\displaystyle{ \widehat{\beta } }[/math] and
[math]\displaystyle{ \widehat{C} }[/math] positive parameters):
- [math]\displaystyle{ \begin{align} & {{\beta }_{U}}= & \widehat{\beta }\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{\beta })}}{\widehat{\beta }}}} \\ & {{\beta }_{L}}= & \widehat{\beta }\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{\beta })}}{\widehat{\beta }}}} \end{align} }[/math]
- [math]\displaystyle{ \begin{align} & {{B}_{U}}= & \widehat{B}+{{K}_{\alpha }}\sqrt{Var(\widehat{B})} \\ & {{B}_{L}}= & \widehat{B}-{{K}_{\alpha }}\sqrt{Var(\widehat{A})} \end{align} }[/math]
- [math]\displaystyle{ \begin{align} & {{C}_{U}}= & \widehat{C}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{C})}}{\widehat{C}}}} \\ & {{C}_{L}}= & \widehat{C}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{C})}}{\widehat{C}}}} \end{align} }[/math]
and:
- [math]\displaystyle{ \begin{align} & {{n}_{U}}= & \widehat{n}+{{K}_{\alpha }}\sqrt{Var(\widehat{n})} \\ & {{n}_{L}}= & \widehat{n}-{{K}_{\alpha }}\sqrt{Var(\widehat{n})} \end{align} }[/math]
The variances and covariances of [math]\displaystyle{ \beta , }[/math] [math]\displaystyle{ B, }[/math] [math]\displaystyle{ C, }[/math] and [math]\displaystyle{ n }[/math] are estimated from the Fisher matrix (evaluated at [math]\displaystyle{ \widehat{\beta }, }[/math] [math]\displaystyle{ \widehat{B}, }[/math] [math]\displaystyle{ \widehat{C}, }[/math] [math]\displaystyle{ \widehat{n}) }[/math] as follows:
- [math]\displaystyle{ \left[ \begin{matrix} Var(\widehat{\beta }) & Cov(\widehat{\beta },\widehat{B}) & Cov(\widehat{\beta },\widehat{C}) & Cov(\widehat{\beta },\widehat{n}) \\ Cov(\widehat{B},\widehat{\beta }) & Var(\widehat{B}) & Cov(\widehat{B},\widehat{C}) & Cov(\widehat{B},\widehat{n}) \\ Cov(\widehat{C},\widehat{\beta }) & Cov(\widehat{C},\widehat{B}) & Var(\widehat{C}) & Cov(\widehat{C},\widehat{n}) \\ Cov(\widehat{n},\widehat{\beta }) & Cov(\widehat{n},\widehat{B}) & Cov(\widehat{n},\widehat{C}) & Var(\widehat{n}) \\ \end{matrix} \right]={{\left[ F \right]}^{-1}} }[/math]
where:
- [math]\displaystyle{ F=\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{B}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{C}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right] }[/math]
Confidence Bounds on Reliability
The reliability function (ML estimate) for the T-NT Weibull model is given by:
- [math]\displaystyle{ \widehat{R}(T,U,V)={{e}^{-{{\left( \tfrac{{{U}^{\widehat{n}}}{{e}^{-\tfrac{\widehat{B}}{V}}}}{\widehat{C}}T \right)}^{\widehat{\beta }}}}} }[/math]
or:
- [math]\displaystyle{ \widehat{R}(T,U,V)={{e}^{-{{e}^{\ln \left[ {{\left( \tfrac{{{U}^{\widehat{n}}}{{e}^{-\tfrac{\widehat{B}}{V}}}}{\widehat{C}}T \right)}^{\widehat{\beta }}} \right]}}}} }[/math]
- Setting:
- [math]\displaystyle{ \widehat{u}=\ln \left[ {{\left( \frac{{{U}^{\widehat{n}}}{{e}^{-\tfrac{\widehat{B}}{V}}}}{\widehat{C}}T \right)}^{\widehat{\beta }}} \right] }[/math]
or:
- [math]\displaystyle{ \widehat{u}=\widehat{\beta }\left[ \ln (T)-\frac{\widehat{B}}{V}-\ln (\widehat{C})+\widehat{n}\ln (U) \right] }[/math]
The reliability function now becomes:
- [math]\displaystyle{ \widehat{R}(T,U,V)={{e}^{-e\widehat{^{u}}}} }[/math]
The next step is to find the upper and lower bounds on [math]\displaystyle{ u }[/math] :
- [math]\displaystyle{ {{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]
- [math]\displaystyle{ {{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial B} \right)}^{2}}Var(\widehat{B}) +{{\left( \frac{\partial \widehat{u}}{\partial C} \right)}^{2}}Var(\widehat{C})+{{\left( \frac{\partial \widehat{u}}{\partial n} \right)}^{2}}Var(\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{\beta },\widehat{B}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{\beta },\widehat{C}) \\ & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{\beta },\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial B} \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{B},\widehat{C}) +2\left( \frac{\partial \widehat{u}}{\partial B} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{B},\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial C} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{C},\widehat{n}) \end{align} }[/math]
or:
- [math]\displaystyle{ \begin{align} Var(\widehat{u})= & {{\left( \frac{\widehat{u}}{\widehat{\beta }} \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\widehat{\beta }}{V} \right)}^{2}}Var(\widehat{B}) +{{\left( \frac{\widehat{\beta }}{\widehat{C}} \right)}^{2}}Var(\widehat{C})+{{\left( \widehat{\beta }\ln (U) \right)}^{2}}Var(\widehat{n}) -\frac{2\widehat{u}}{V}Cov(\widehat{\beta },\widehat{B})-\frac{2\widehat{u}}{\widehat{C}}Cov(\widehat{\beta },\widehat{C}) \\ & +2\widehat{u}\ln (U)Cov(\widehat{\beta },\widehat{n}) +\frac{2{{\widehat{\beta }}^{2}}}{\widehat{C}V}Cov(\widehat{B},\widehat{C})-\frac{2{{\widehat{\beta }}^{2}}\ln (U)}{V}Cov(\widehat{B},\widehat{n}) -\frac{2{{\widehat{\beta }}^{2}}\ln (U)}{\widehat{C}}Cov(\widehat{C},\widehat{n}) \end{align} }[/math]
The upper and lower bounds on reliability are:
- [math]\displaystyle{ \begin{align} & {{R}_{U}}= & {{e}^{-{{e}^{\left( {{u}_{L}} \right)}}}} \\ & {{R}_{L}}= & {{e}^{-{{e}^{\left( {{u}_{U}} \right)}}}} \end{align} }[/math]
Confidence Bounds on Time
The bounds on time (ML estimate of time) for a given reliability are estimated by first solving the reliability function with respect to time as follows:
- [math]\displaystyle{ \begin{align} \ln (R)=\ & -{{\left( \frac{{{U}^{\widehat{n}}}{{e}^{-\tfrac{\widehat{B}}{V}}}}{\widehat{C}}\widehat{T} \right)}^{\widehat{\beta }}} \\ \ln (-\ln (R))=\ & \widehat{\beta }\left( \ln (\widehat{T})-\frac{\widehat{B}}{V}-\ln (\widehat{C})+\widehat{n}\ln (U) \right) \end{align} }[/math]
or:
- [math]\displaystyle{ \widehat{u}=\frac{1}{\widehat{\beta }}\ln (-\ln (R))+\frac{\widehat{B}}{V}+\ln (\widehat{C})-\widehat{n}\ln (U) }[/math]
where [math]\displaystyle{ \widehat{u}=\ln \widehat{T}. }[/math]
The upper and lower bounds on [math]\displaystyle{ u }[/math] are estimated from:
- [math]\displaystyle{ {{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]
- [math]\displaystyle{ {{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial B} \right)}^{2}}Var(\widehat{B}) +{{\left( \frac{\partial \widehat{u}}{\partial C} \right)}^{2}}Var(\widehat{C})+{{\left( \frac{\partial \widehat{u}}{\partial n} \right)}^{2}}Var(\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{\beta },\widehat{B}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{\beta },\widehat{C}) \\ & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{\beta },\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial B} \right)\left( \frac{\partial \widehat{u}}{\partial C} \right)Cov(\widehat{B},\widehat{C}) +2\left( \frac{\partial \widehat{u}}{\partial B} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{B},\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial C} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{C},\widehat{n}) \end{align} }[/math]
or:
- [math]\displaystyle{ \begin{align} Var(\widehat{u})= & \frac{1}{{{\widehat{\beta }}^{4}}}{{\left[ \ln (-\ln (R)) \right]}^{2}}Var(\widehat{\beta }) +\frac{1}{{{V}^{2}}}Var(\widehat{B})+\frac{1}{{{\widehat{C}}^{2}}}Var(\widehat{C})+{{\left[ \ln (U) \right]}^{2}}Var(\widehat{n}) -\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}V}Cov(\widehat{\beta },\widehat{B}) -\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}\widehat{C}}Cov(\widehat{\beta },\widehat{C}) \\ & +\frac{2\ln (-\ln (R))\ln (U)}{{{\widehat{\beta }}^{2}}}Cov(\widehat{\beta },\widehat{n}) +\frac{2}{\widehat{C}V}Cov(\widehat{B},\widehat{C}) -\frac{2\ln (U)}{V}Cov(\widehat{B},\widehat{n})-\frac{2\ln (U)}{\widehat{C}}Cov(\widehat{C},\widehat{n}) \end{align} }[/math]
The upper and lower bounds on time are then found by:
- [math]\displaystyle{ \begin{align} & {{T}_{U}}= & {{e}^{{{u}_{U}}}} \\ & {{T}_{L}}= & {{e}^{{{u}_{L}}}} \end{align} }[/math]
Approximate Confidence Bounds for the T-NT Lognormal
Bounds on the Parameters
Since the standard deviation, [math]\displaystyle{ {{\widehat{\sigma }}_{{{T}'}}} }[/math] , and [math]\displaystyle{ \widehat{C} }[/math] are positive parameters, [math]\displaystyle{ \ln ({{\widehat{\sigma }}_{{{T}'}}}) }[/math] and [math]\displaystyle{ \ln (\widehat{C}) }[/math] are treated as normally distributed and the bounds are estimated from:
- [math]\displaystyle{ \begin{align} {{\sigma }_{U}}=\ & {{\widehat{\sigma }}_{{{T}'}}}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}} &\text{ (Upper bound)} \\ & & \\ {{\sigma }_{L}}=\ & \frac{{{\widehat{\sigma }}_{{{T}'}}}}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}}} &\text{ (Lower bound)} \end{align} }[/math]
and:
- [math]\displaystyle{ \begin{align} {{C}_{U}}= & \widehat{C}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{C})}}{\widehat{C}}}} &\text{ (Upper bound)} \\ & & \\ {{C}_{L}}= & \frac{\widehat{A}}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{C})}}{\widehat{C}}}}} &\text{ (Lower bound)} \end{align} }[/math]
The lower and upper bounds on [math]\displaystyle{ B }[/math] and [math]\displaystyle{ n }[/math] are estimated from:
- [math]\displaystyle{ \begin{align} & {{B}_{U}}= & \widehat{B}+{{K}_{\alpha }}\sqrt{Var(\widehat{B})}\text{ (Upper bound)} \\ & & \\ & {{B}_{L}}= & \widehat{B}-{{K}_{\alpha }}\sqrt{Var(\widehat{B})}\text{ (Lower bound)} \end{align} }[/math]
and:
- [math]\displaystyle{ \begin{align} & {{n}_{U}}= & \widehat{n}+{{K}_{\alpha }}\sqrt{Var(\widehat{n})}\text{ (Upper bound)} \\ & & \\ & {{n}_{L}}= & \widehat{n}-{{K}_{\alpha }}\sqrt{Var(\widehat{n})}\text{ (Lower bound)} \end{align} }[/math]
The variances and covariances of [math]\displaystyle{ B }[/math] , [math]\displaystyle{ C, }[/math] [math]\displaystyle{ n, }[/math] and [math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math] are estimated from the local Fisher matrix (evaluated at [math]\displaystyle{ \widehat{B}, }[/math] [math]\displaystyle{ \widehat{C}, }[/math] [math]\displaystyle{ \widehat{n} }[/math] , [math]\displaystyle{ {{\widehat{\sigma }}_{{{T}'}}}) }[/math] as follows:
- [math]\displaystyle{ \left( \begin{matrix} Var\left( {{\widehat{\sigma }}_{{{T}'}}} \right) & Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) & Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right) & Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ Cov\left( {{\widehat{\sigma }}_{{{T}'}}},\widehat{B} \right) & Var\left( \widehat{B} \right) & Cov\left( \widehat{B},\widehat{C} \right) & Cov\left( \widehat{B},\widehat{n} \right) \\ Cov\left( {{\widehat{\sigma }}_{{{T}'}}},\widehat{C} \right) & Cov\left( \widehat{C},\widehat{B} \right) & Var\left( \widehat{C} \right) & Cov\left( \widehat{C},\widehat{n} \right) \\ Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) & Cov\left( \widehat{n},\widehat{B} \right) & Cov\left( \widehat{n},\widehat{C} \right) & Var\left( \widehat{n} \right) \\ \end{matrix} \right)={{\left[ F \right]}^{-1}} }[/math]
- where:
- [math]\displaystyle{ F=\left( \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial \sigma _{{{T}'}}^{2}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{B}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{C}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial C} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right) }[/math]
Bounds on Reliability
The reliability of the lognormal distribution is given by:
- [math]\displaystyle{ R({T}',U,V;B,C,n,{{\sigma }_{{{T}'}}})=\int_{{{T}'}}^{\infty }\frac{1}{{{\widehat{\sigma }}_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\ln (\widehat{C})+\widehat{n}\ln ({{U}_{i}})-\tfrac{\widehat{B}}{{{V}_{i}}}}{{{\widehat{\sigma }}_{{{T}'}}}} \right)}^{2}}}}dt }[/math]
Let [math]\displaystyle{ \widehat{z}(t,U,V;B,C,n,{{\sigma }_{T}})=\tfrac{t-\ln (\widehat{C})+\widehat{n}\ln (U)-\tfrac{\widehat{B}}{V}}{{{\widehat{\sigma }}_{{{T}'}}}}, }[/math] then [math]\displaystyle{ \tfrac{d\widehat{z}}{dt}=\tfrac{1}{{{\widehat{\sigma }}_{{{T}'}}}}. }[/math]
For [math]\displaystyle{ t={T}' }[/math] , [math]\displaystyle{ \widehat{z}=\tfrac{{T}'-\ln (\widehat{C})+\widehat{n}\ln (U)-\tfrac{\widehat{B}}{V}}{{{\widehat{\sigma }}_{{{T}'}}}} }[/math] , and for [math]\displaystyle{ t=\infty , }[/math] [math]\displaystyle{ \widehat{z}=\infty . }[/math]
The above equation then becomes:
- [math]\displaystyle{ R(\widehat{z})=\int_{\widehat{z}({T}',U,V)}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz }[/math]
The bounds on [math]\displaystyle{ z }[/math] are estimated from:
- [math]\displaystyle{ \begin{align} & {{z}_{U}}= & \widehat{z}+{{K}_{\alpha }}\sqrt{Var(\widehat{z})} \\ & {{z}_{L}}= & \widehat{z}-{{K}_{\alpha }}\sqrt{Var(\widehat{z})} \end{align} }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\widehat{z})= & \left( \frac{\partial \widehat{z}}{\partial B} \right)_{\widehat{B}}^{2}Var(\widehat{B})+\left( \frac{\partial \widehat{z}}{\partial C} \right)_{\widehat{C}}^{2}Var(\widehat{C}) +\left( \frac{\partial \widehat{z}}{\partial n} \right)_{\widehat{b}}^{2}Var(\widehat{n})+\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)_{{{\widehat{\sigma }}_{{{T}'}}}}^{2}Var({{\widehat{\sigma }}_{{{T}'}}}) +2{{\left( \frac{\partial \widehat{z}}{\partial B} \right)}_{\widehat{B}}}{{\left( \frac{\partial \widehat{z}}{\partial C} \right)}_{\widehat{C}}}Cov\left( \widehat{B},\widehat{C} \right) \\ & +2{{\left( \frac{\partial \widehat{z}}{\partial B} \right)}_{\widehat{B}}}{{\left( \frac{\partial \widehat{z}}{\partial b} \right)}_{\widehat{n}}}Cov\left( \widehat{B},\widehat{n} \right) +2{{\left( \frac{\partial \widehat{z}}{\partial C} \right)}_{\widehat{C}}}{{\left( \frac{\partial \widehat{z}}{\partial n} \right)}_{\widehat{n}}}Cov\left( \widehat{C},\widehat{n} \right) +2{{\left( \frac{\partial \widehat{z}}{\partial B} \right)}_{\widehat{B}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ & +2{{\left( \frac{\partial \widehat{z}}{\partial C} \right)}_{\widehat{C}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right) +2{{\left( \frac{\partial \widehat{z}}{\partial n} \right)}_{\widehat{n}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]
or:
- [math]\displaystyle{ \begin{align} Var(\widehat{z})= & \frac{1}{\widehat{\sigma }_{{{T}'}}^{2}}[\frac{1}{{{V}^{2}}}Var(\widehat{B})+\frac{1}{{{C}^{2}}}Var(\widehat{C})+\ln {{(U)}^{2}}Var(\widehat{n})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) +\frac{2}{C\cdot V}Cov\left( \widehat{B},\widehat{C} \right)-\frac{2\ln (U)}{V}Cov\left( \widehat{B},\widehat{n} \right) \\ & -\frac{2\ln (U)}{C}Cov\left( \widehat{C},\widehat{n} \right)+\frac{2\widehat{z}}{V}Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) +\frac{2\widehat{z}}{C}Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right)-2\widehat{z}\ln (U)Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right)] \end{align} }[/math]
The upper and lower bounds on reliability are:
- [math]\displaystyle{ \begin{align} & {{R}_{U}}= & \int_{{{z}_{L}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Upper bound)} \\ & {{R}_{L}}= & \int_{{{z}_{U}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Lower bound)} \end{align} }[/math]
Confidence Bounds on Time
The bounds around time for a given lognormal percentile (unreliability) are estimated by first solving the reliability equation with respect to time, as follows:
- [math]\displaystyle{ {T}'(U,V;\widehat{B},\widehat{C},\widehat{n},{{\widehat{\sigma }}_{{{T}'}}})=\ln (\widehat{C})+\widehat{n}\ln (U)-\frac{\widehat{B}}{V}+z\cdot {{\widehat{\sigma }}_{{{T}'}}} }[/math]
where:
- [math]\displaystyle{ \begin{align} {T}'(U,V;\widehat{A},\widehat{\phi },\widehat{b},{{\widehat{\sigma }}_{{{T}'}}})=\ & \ln (T) \\ z=\ & {{\Phi }^{-1}}\left[ F({T}') \right] \end{align} }[/math]
and:
- [math]\displaystyle{ \Phi (z)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{z({T}',U,V)}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz }[/math]
The next step is to calculate the variance of [math]\displaystyle{ {T}'(U,V;\widehat{B},\widehat{C},\widehat{n},{{\widehat{\sigma }}_{{{T}'}}}) }[/math] :
- [math]\displaystyle{ \begin{align} Var({T}')= & {{\left( \frac{\partial {T}'}{\partial B} \right)}^{2}}Var(\widehat{B})+{{\left( \frac{\partial {T}'}{\partial C} \right)}^{2}}Var(\widehat{C}) +{{\left( \frac{\partial {T}'}{\partial n} \right)}^{2}}Var(\widehat{n})+{{\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial C} \right)Cov\left( \widehat{B},\widehat{C} \right) \\ & +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial n} \right)Cov\left( \widehat{B},\widehat{n} \right) +2\left( \frac{\partial {T}'}{\partial C} \right)\left( \frac{\partial {T}'}{\partial n} \right)Cov\left( \widehat{C},\widehat{n} \right) +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ & +2\left( \frac{\partial {T}'}{\partial C} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right) +2\left( \frac{\partial {T}'}{\partial n} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]
or:
The upper and lower bounds are then found by:
- [math]\displaystyle{ \begin{align} & T_{U}^{\prime }= & \ln {{T}_{U}}={T}'+{{K}_{\alpha }}\sqrt{Var({T}')} \\ & T_{L}^{\prime }= & \ln {{T}_{L}}={T}'-{{K}_{\alpha }}\sqrt{Var({T}')} \end{align} }[/math]
Solving for [math]\displaystyle{ {{T}_{U}} }[/math] and [math]\displaystyle{ {{T}_{L}} }[/math] yields:
- [math]\displaystyle{ \begin{align} & {{T}_{U}}= & {{e}^{T_{U}^{\prime }}}\text{ (Upper bound)} \\ & {{T}_{L}}= & {{e}^{T_{L}^{\prime }}}\text{ (Lower bound)} \end{align} }[/math]