Inverse Power Law Relationship

From ReliaWiki
Jump to navigation Jump to search

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/accelerated_life_testing_data_analysis

Chapter 6: Inverse Power Law Relationship


ALTAbox.png

Chapter 6  
Inverse Power Law Relationship  

Synthesis-icon.png

Available Software:
ALTA

Examples icon.png

More Resources:
ALTA Examples


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/accelerated_life_testing_data_analysis

Chapter 6: Inverse Power Law Relationship


ALTAbox.png

Chapter 6  
Inverse Power Law Relationship  

Synthesis-icon.png

Available Software:
ALTA

Examples icon.png

More Resources:
ALTA Examples


Template loop detected: Template:Inverse power law relationship

Appendix 8A: IPL Confidence Bounds


Approximate Confidence Bounds on IPL-Exponential


Confidence Bounds on the Mean Life


From the inverse power law relationship the mean life for the exponential distribution is given by setting [math]\displaystyle{ m=L(V) }[/math] . The upper [math]\displaystyle{ ({{m}_{U}}) }[/math] and lower [math]\displaystyle{ ({{m}_{L}}) }[/math] bounds on the mean life (ML estimate of the mean life) are estimated by:

[math]\displaystyle{ {{m}_{U}}=\widehat{m}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} }[/math]


[math]\displaystyle{ {{m}_{L}}=\widehat{m}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} }[/math]


where [math]\displaystyle{ {{K}_{\alpha }} }[/math] is defined by:


[math]\displaystyle{ \alpha =\frac{1}{\sqrt{2\pi }}\int_{{{K}_{\alpha }}}^{\infty }{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }}) }[/math]


If [math]\displaystyle{ \delta }[/math] is the confidence level, then [math]\displaystyle{ \alpha =\tfrac{1-\delta }{2} }[/math] for the two-sided bounds, and [math]\displaystyle{ \alpha =1-\delta }[/math] for the one-sided bounds. The variance of [math]\displaystyle{ \widehat{m} }[/math] is given by:


[math]\displaystyle{ \begin{align} & Var(\widehat{m})= & {{\left( \frac{\partial m}{\partial K} \right)}^{2}}Var(\widehat{K})+{{\left( \frac{\partial m}{\partial n} \right)}^{2}}Var(\widehat{n}) +2\left( \frac{\partial m}{\partial K} \right)\left( \frac{\partial m}{\partial n} \right)Cov(\widehat{K},\widehat{n}) \end{align} }[/math]


or:

[math]\displaystyle{ Var(\widehat{m})=\frac{1}{{{\widehat{K}}^{2}}{{V}^{2\widehat{n}}}}\left[ \frac{1}{{{\widehat{K}}^{2}}}Var(\widehat{K})+{{\left[ \ln (V) \right]}^{2}}Var(\widehat{n})+\frac{2\ln (V)}{\widehat{K}}Cov(\widehat{K},\widehat{n}) \right] }[/math]


The variances and covariance of [math]\displaystyle{ K }[/math] and [math]\displaystyle{ n }[/math] are estimated from the Fisher matrix (evaluated at [math]\displaystyle{ \widehat{K}, }[/math] [math]\displaystyle{ \widehat{n}) }[/math] as follows:

[math]\displaystyle{ \left[ \begin{matrix} Var(\widehat{K}) & Cov(\widehat{K},\widehat{n}) \\ Cov(\widehat{n},\widehat{K}) & Var(\widehat{n}) \\ \end{matrix} \right]={{\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{K}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial K\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial K} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right]}^{-1}} }[/math]


Confidence Bounds on Reliability


The bounds on reliability at a given time, [math]\displaystyle{ T }[/math] , are estimated by:


[math]\displaystyle{ \begin{align} & {{R}_{U}}= & {{e}^{-\tfrac{T}{{{m}_{U}}}}} \\ & {{R}_{L}}= & {{e}^{-\tfrac{T}{{{m}_{L}}}}} \end{align} }[/math]


Confidence Bounds on Time


The bounds on time (ML estimate of time) for a given reliability are estimated by first solving the reliability function with respect to time:


[math]\displaystyle{ \widehat{T}=-\widehat{m}\cdot \ln (R) }[/math]


The corresponding confidence bounds are estimated from:


[math]\displaystyle{ \begin{align} & {{T}_{U}}= & -{{m}_{U}}\cdot \ln (R) \\ & {{T}_{L}}= & -{{m}_{L}}\cdot \ln (R) \end{align} }[/math]


Approximate Confidence Bounds on IPL-Weibull


Bounds on the Parameters


Using the same approach as previously discussed ( [math]\displaystyle{ \widehat{\beta } }[/math] and [math]\displaystyle{ \widehat{K} }[/math] positive parameters):


[math]\displaystyle{ \begin{align} & {{\beta }_{U}}= & \widehat{\beta }\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{\beta })}}{\widehat{\beta }}}} \\ & {{\beta }_{L}}= & \widehat{\beta }\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{\beta })}}{\widehat{\beta }}}} \end{align} }[/math]


[math]\displaystyle{ \begin{align} & {{K}_{U}}= & \widehat{K}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{K})}}{\widehat{K}}}} \\ & {{K}_{L}}= & \widehat{K}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{K})}}{\widehat{K}}}} \end{align} }[/math]


and:


[math]\displaystyle{ \begin{align} & {{n}_{U}}= & \widehat{n}+{{K}_{\alpha }}\sqrt{Var(\widehat{n})} \\ & {{n}_{L}}= & \widehat{n}-{{K}_{\alpha }}\sqrt{Var(\widehat{n})} \end{align} }[/math]



The variances and covariances of [math]\displaystyle{ \beta , }[/math] [math]\displaystyle{ K, }[/math] and [math]\displaystyle{ n }[/math] are estimated from the local Fisher matrix (evaluated at [math]\displaystyle{ \widehat{\beta }, }[/math] [math]\displaystyle{ \widehat{K}, }[/math] [math]\displaystyle{ \widehat{n}) }[/math] as follows:

[math]\displaystyle{ \left[ \begin{matrix} Var(\widehat{\beta }) & Cov(\widehat{\beta },\widehat{K}) & Cov(\widehat{\beta },\widehat{n}) \\ Cov(\widehat{K},\widehat{\beta }) & Var(\widehat{K}) & Cov(\widehat{K},\widehat{n}) \\ Cov(\widehat{n},\widehat{\beta }) & Cov(\widehat{n},\widehat{K}) & Var(\widehat{n}) \\ \end{matrix} \right]={{\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial K} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial K\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{K}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial K\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial A} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right]}^{-1}} }[/math]


Confidence Bounds on Reliability


The reliability function (ML estimate) for the IPL-Weibull model is given by:


[math]\displaystyle{ \widehat{R}(T,V)={{e}^{-{{\left( \widehat{K}{{V}^{\widehat{n}}}T \right)}^{\widehat{\beta }}}}} }[/math]


or:


[math]\displaystyle{ \widehat{R}(T,V)={{e}^{-{{e}^{\ln \left[ {{\left( \widehat{K}{{V}^{\widehat{n}}}T \right)}^{\widehat{\beta }}} \right]}}}} }[/math]


Setting:


[math]\displaystyle{ \widehat{u}=\ln \left[ \left( \widehat{K}V\widehat{^{n}}T \right)\widehat{^{\beta }} \right] }[/math]


or:


[math]\displaystyle{ \widehat{u}=\widehat{\beta }\left[ \ln (T)+\ln (\widehat{K})+\widehat{n}\ln (V) \right] }[/math]


The reliability function now becomes:


[math]\displaystyle{ \widehat{R}(T,V)={{e}^{-e\widehat{^{u}}}} }[/math]


The next step is to find the upper and lower bounds on [math]\displaystyle{ \widehat{u} }[/math] :

[math]\displaystyle{ {{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]


[math]\displaystyle{ {{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]


where:


[math]\displaystyle{ \begin{align} Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial K} \right)}^{2}}Var(\widehat{K}) +{{\left( \frac{\partial \widehat{u}}{\partial n} \right)}^{2}}Var(\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial K} \right)Cov(\widehat{\beta },\widehat{K})\\ & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{\beta },\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial K} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{K},\widehat{n}) \end{align} }[/math]


or:


[math]\displaystyle{ \begin{align} & Var(\widehat{u})= & {{\left( \frac{\widehat{u}}{\widehat{\beta }} \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\widehat{\beta }}{\widehat{K}} \right)}^{2}}Var(\widehat{K}) +{{\widehat{\beta }}^{2}}{{\left[ \ln (V) \right]}^{2}}Var(\widehat{n}) +\frac{2\widehat{u}}{\widehat{K}}Cov(\widehat{\beta },\widehat{K})+2\widehat{u}\ln (V)Cov(\widehat{\beta },\widehat{n})+\frac{2{{\widehat{\beta }}^{2}}\ln (V)}{\widehat{K}}Cov(\widehat{K},\widehat{n}) \end{align} }[/math]


The upper and lower bounds on reliability are:


[math]\displaystyle{ \begin{align} & {{R}_{U}}= & {{e}^{-{{e}^{\left( {{u}_{L}} \right)}}}} \\ & {{R}_{L}}= & {{e}^{-{{e}^{\left( {{u}_{U}} \right)}}}} \end{align} }[/math]


Confidence Bounds on Time


The bounds on time for a given reliability (ML estimate of time) are estimated by first solving the reliability function with respect to time:


[math]\displaystyle{ \begin{align} \ln (R) &=\ -{{\left( \widehat{K}{{V}^{\widehat{n}}}\widehat{T} \right)}^{\widehat{\beta }}} \\ \ln (-\ln (R)) &=\ \widehat{\beta }\left[ \ln (\widehat{T})+\ln (\widehat{K})+\widehat{n}\ln (V) \right] \end{align} }[/math]


or:


[math]\displaystyle{ \widehat{u}=\frac{1}{\widehat{\beta }}\ln (-\ln (R))-\ln (\widehat{K})-\widehat{n}\ln (V) }[/math]


where [math]\displaystyle{ \widehat{u}=\ln \widehat{T}. }[/math] The upper and lower bounds on [math]\displaystyle{ u }[/math] are estimated from:


[math]\displaystyle{ \begin{align} & {{u}_{U}}= & \widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} \\ & {{u}_{L}}= & \widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} \end{align} }[/math]


where:


[math]\displaystyle{ \begin{align} Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial K} \right)}^{2}}Var(\widehat{K}) +{{\left( \frac{\partial \widehat{u}}{\partial n} \right)}^{2}}Var(\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial K} \right)Cov(\widehat{\beta },\widehat{K}) \\ & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{\beta },\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial K} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{K},\widehat{n}) \end{align} }[/math]


or:


[math]\displaystyle{ \begin{align} Var(\widehat{u})= & \frac{1}{{{\widehat{\beta }}^{4}}}{{\left[ \ln (-\ln (R)) \right]}^{2}}Var(\widehat{\beta })+\frac{1}{{{\widehat{K}}^{2}}}Var(\widehat{K}) +{{\left[ \ln (V) \right]}^{2}}Var(\widehat{n}) +\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}\widehat{K}}Cov(\widehat{\beta },\widehat{K}) \\ & +\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}}\ln (V)Cov(\widehat{\beta },\widehat{n}) +\frac{2\ln (V)}{\widehat{K}}Cov(\widehat{K},\widehat{n}) \end{align} }[/math]


The upper and lower bounds on time are then found by:


[math]\displaystyle{ \begin{align} & {{T}_{U}}= & {{e}^{{{u}_{U}}}} \\ & {{T}_{L}}= & {{e}^{{{u}_{L}}}} \end{align} }[/math]


Approximate Confidence Bounds on IPL-Lognormal


Bounds on the Parameters


Since the standard deviation, [math]\displaystyle{ {{\widehat{\sigma }}_{T}} }[/math] , and [math]\displaystyle{ \widehat{K} }[/math] are positive parameters, then [math]\displaystyle{ \ln ({{\widehat{\sigma }}_{{{T}'}}}) }[/math] and [math]\displaystyle{ \ln (\widehat{K}) }[/math] are treated as normally distributed, and the bounds are estimated from:

[math]\displaystyle{ \begin{align} & {{\sigma }_{U}}= & {{\widehat{\sigma }}_{{{T}'}}}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}}\text{ (Upper bound)} \\ & {{\sigma }_{L}}= & \frac{{{\widehat{\sigma }}_{{{T}'}}}}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}}}\text{ (Lower bound)} \end{align} }[/math]


and:


[math]\displaystyle{ \begin{align} & {{K}_{U}}= & \widehat{K}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{K})}}{\widehat{K}}}}\text{ (Upper bound)} \\ & {{K}_{L}}= & \frac{\widehat{K}}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{K})}}{\widehat{K}}}}}\text{ (Lower bound)} \end{align} }[/math]


The lower and upper bounds on [math]\displaystyle{ n }[/math] , are estimated from:


[math]\displaystyle{ \begin{align} & {{n}_{U}}= & \widehat{n}+{{K}_{\alpha }}\sqrt{Var(\widehat{n})}\text{ (Upper bound)} \\ & {{n}_{L}}= & \widehat{n}-{{K}_{\alpha }}\sqrt{Var(\widehat{n})}\text{ (Lower bound)} \end{align} }[/math]


The variances and covariances of [math]\displaystyle{ A, }[/math] [math]\displaystyle{ B, }[/math] and [math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math] are estimated from the local Fisher matrix (evaluated at [math]\displaystyle{ \widehat{A}, }[/math] [math]\displaystyle{ \widehat{B} }[/math] , [math]\displaystyle{ {{\widehat{\sigma }}_{{{T}'}}}), }[/math] as follows:


[math]\displaystyle{ \left[ \begin{matrix} Var({{\widehat{\sigma }}_{{{T}'}}}) & Cov(\widehat{K},{{\widehat{\sigma }}_{{{T}'}}}) & Cov(\widehat{n},{{\widehat{\sigma }}_{{{T}'}}}) \\ Cov({{\widehat{\sigma }}_{{{T}'}}},\widehat{K}) & Var(\widehat{K}) & Cov(\widehat{K},\widehat{n}) \\ Cov({{\widehat{\sigma }}_{{{T}'}}},\widehat{n}) & Cov(\widehat{n},\widehat{K}) & Var\left( \widehat{n} \right) \\ \end{matrix} \right]={{\left[ F \right]}^{-1}} }[/math]


where:


[math]\displaystyle{ F=\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial \sigma _{{{T}'}}^{2}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial K} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial K\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{K}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial K\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial K} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right] }[/math]


Bounds on Reliability


The reliability of the lognormal distribution is:


[math]\displaystyle{ R({T}',V;K,n,{{\sigma }_{{{T}'}}})=\mathop{}_{{{T}'}}^{\infty }\frac{1}{{{\widehat{\sigma }}_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t+\ln (\widehat{K})+\widehat{n}\ln (V)}{{{\widehat{\sigma }}_{{{T}'}}}} \right)}^{2}}}}dt }[/math]


Let [math]\displaystyle{ \widehat{z}(t,V;K,n,{{\sigma }_{T}})=\tfrac{t+\ln (\widehat{K})+\widehat{n}\ln (V)}{{{\widehat{\sigma }}_{{{T}'}}}}, }[/math] then [math]\displaystyle{ \tfrac{d\widehat{z}}{dt}=\tfrac{1}{{{\widehat{\sigma }}_{{{T}'}}}}. }[/math]


For [math]\displaystyle{ t={T}' }[/math] , [math]\displaystyle{ \widehat{z}=\tfrac{{T}'+\ln (\widehat{K})+\widehat{n}\ln (V)}{{{\widehat{\sigma }}_{{{T}'}}}} }[/math] , and for [math]\displaystyle{ t=\infty , }[/math] [math]\displaystyle{ \widehat{z}=\infty . }[/math] The above equation then becomes:


[math]\displaystyle{ R(\widehat{z})=\mathop{}_{\widehat{z}({T}',V)}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz }[/math]


The bounds on [math]\displaystyle{ z }[/math] are estimated from:


[math]\displaystyle{ \begin{align} & {{z}_{U}}= & \widehat{z}+{{K}_{\alpha }}\sqrt{Var(\widehat{z})} \\ & {{z}_{L}}= & \widehat{z}-{{K}_{\alpha }}\sqrt{Var(\widehat{z})} \end{align} }[/math]


where:

.

[math]\displaystyle{ \begin{align} & Var(\widehat{z})= & \left( \frac{\partial \widehat{z}}{\partial K} \right)_{\widehat{K}}^{2}Var(\widehat{K})+\left( \frac{\partial \widehat{z}}{\partial n} \right)_{\widehat{n}}^{2}Var(\widehat{n})+\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)_{{{\widehat{\sigma }}_{{{T}'}}}}^{2}Var({{\widehat{\sigma }}_{T}}) \\ & & +2{{\left( \frac{\partial \widehat{z}}{\partial K} \right)}_{\widehat{K}}}{{\left( \frac{\partial \widehat{z}}{\partial n} \right)}_{\widehat{n}}}Cov\left( \widehat{K},\widehat{n} \right) \\ & & +2{{\left( \frac{\partial \widehat{z}}{\partial K} \right)}_{\widehat{K}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{K},{{\widehat{\sigma }}_{T}} \right) \\ & & +2{{\left( \frac{\partial \widehat{z}}{\partial n} \right)}_{\widehat{n}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{n},{{\widehat{\sigma }}_{T}} \right) \end{align} }[/math].


or:


[math]\displaystyle{ \begin{align} & Var(\widehat{z})= & \frac{1}{\widehat{\sigma }_{{{T}'}}^{2}}[\frac{1}{{{K}^{2}}}Var(\widehat{K})+\ln {{(V)}^{2}}Var(\widehat{n})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\ & & +\frac{2\ln (V)}{K}Cov\left( \widehat{K},\widehat{n} \right)-\frac{2\widehat{z}}{K}Cov\left( \widehat{K},{{\widehat{\sigma }}_{{{T}'}}} \right)-2\widehat{z}\ln (V)Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right)] \end{align} }[/math]


The upper and lower bounds on reliability are:


[math]\displaystyle{ \begin{align} & {{R}_{U}}= & \mathop{}_{{{z}_{L}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Upper bound)} \\ & {{R}_{L}}= & \mathop{}_{{{z}_{U}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Lower bound)} \end{align} }[/math]


Confidence Bounds on Time


The bounds around time, for a given lognormal percentile (unreliability), are estimated by first solving the reliability equation with respect to time, as follows:


[math]\displaystyle{ {T}'(V;\widehat{K},\widehat{n},{{\widehat{\sigma }}_{{{T}'}}})=-\ln (\widehat{K})-\widehat{n}\ln (V)+z\cdot {{\widehat{\sigma }}_{{{T}'}}} }[/math]


where:


[math]\displaystyle{ \begin{align} & {T}'(V;\widehat{K},\widehat{n},{{\widehat{\sigma }}_{{{T}'}}})= & \ln (T) \\ & z= & {{\Phi }^{-1}}\left[ F({T}') \right] \end{align} }[/math]


and:


[math]\displaystyle{ \Phi (z)=\frac{1}{\sqrt{2\pi }}\mathop{}_{-\infty }^{z({T}')}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz }[/math]


The next step is to calculate the variance of [math]\displaystyle{ {T}'(V;\widehat{K},\widehat{n},{{\widehat{\sigma }}_{{{T}'}}}): }[/math]


[math]\displaystyle{ \begin{align} & Var({T}')= & {{\left( \frac{\partial {T}'}{\partial K} \right)}^{2}}Var(\widehat{K})+{{\left( \frac{\partial {T}'}{\partial n} \right)}^{2}}Var(\widehat{n})+{{\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\ & & +2\left( \frac{\partial {T}'}{\partial K} \right)\left( \frac{\partial {T}'}{\partial n} \right)Cov\left( \widehat{K},\widehat{n} \right) \\ & & +2\left( \frac{\partial {T}'}{\partial K} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{K},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ & & +2\left( \frac{\partial {T}'}{\partial n} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]


or:


[math]\displaystyle{ \begin{align} & Var({T}')= & \frac{1}{{{K}^{2}}}Var(\widehat{K})+\ln {{(V)}^{2}}Var(\widehat{n})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\ & & +\frac{2\ln (V)}{K}Cov\left( \widehat{K},\widehat{n} \right) \\ & & -\frac{2\widehat{z}}{K}Cov\left( \widehat{K},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ & & -2\widehat{z}\ln (V)Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]


The upper and lower bounds are then found by:


[math]\displaystyle{ \begin{align} & T_{U}^{\prime }= & \ln {{T}_{U}}={T}'+{{K}_{\alpha }}\sqrt{Var({T}')} \\ & T_{L}^{\prime }= & \ln {{T}_{L}}={T}'-{{K}_{\alpha }}\sqrt{Var({T}')} \end{align} }[/math]


Solving for [math]\displaystyle{ {{T}_{U}} }[/math] and [math]\displaystyle{ {{T}_{L}} }[/math] yields:


[math]\displaystyle{ \begin{align} & {{T}_{U}}= & {{e}^{T_{U}^{\prime }}}\text{ (Upper bound)} \\ & {{T}_{L}}= & {{e}^{T_{L}^{\prime }}}\text{ (Lower bound)} \end{align} }[/math]

Appendix 8A: IPL Confidence Bounds


Approximate Confidence Bounds on IPL-Exponential


Confidence Bounds on the Mean Life


From the inverse power law relationship the mean life for the exponential distribution is given by setting [math]\displaystyle{ m=L(V) }[/math] . The upper [math]\displaystyle{ ({{m}_{U}}) }[/math] and lower [math]\displaystyle{ ({{m}_{L}}) }[/math] bounds on the mean life (ML estimate of the mean life) are estimated by:

[math]\displaystyle{ {{m}_{U}}=\widehat{m}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} }[/math]


[math]\displaystyle{ {{m}_{L}}=\widehat{m}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} }[/math]


where [math]\displaystyle{ {{K}_{\alpha }} }[/math] is defined by:


[math]\displaystyle{ \alpha =\frac{1}{\sqrt{2\pi }}\int_{{{K}_{\alpha }}}^{\infty }{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }}) }[/math]


If [math]\displaystyle{ \delta }[/math] is the confidence level, then [math]\displaystyle{ \alpha =\tfrac{1-\delta }{2} }[/math] for the two-sided bounds, and [math]\displaystyle{ \alpha =1-\delta }[/math] for the one-sided bounds. The variance of [math]\displaystyle{ \widehat{m} }[/math] is given by:


[math]\displaystyle{ \begin{align} & Var(\widehat{m})= & {{\left( \frac{\partial m}{\partial K} \right)}^{2}}Var(\widehat{K})+{{\left( \frac{\partial m}{\partial n} \right)}^{2}}Var(\widehat{n}) +2\left( \frac{\partial m}{\partial K} \right)\left( \frac{\partial m}{\partial n} \right)Cov(\widehat{K},\widehat{n}) \end{align} }[/math]


or:

[math]\displaystyle{ Var(\widehat{m})=\frac{1}{{{\widehat{K}}^{2}}{{V}^{2\widehat{n}}}}\left[ \frac{1}{{{\widehat{K}}^{2}}}Var(\widehat{K})+{{\left[ \ln (V) \right]}^{2}}Var(\widehat{n})+\frac{2\ln (V)}{\widehat{K}}Cov(\widehat{K},\widehat{n}) \right] }[/math]


The variances and covariance of [math]\displaystyle{ K }[/math] and [math]\displaystyle{ n }[/math] are estimated from the Fisher matrix (evaluated at [math]\displaystyle{ \widehat{K}, }[/math] [math]\displaystyle{ \widehat{n}) }[/math] as follows:

[math]\displaystyle{ \left[ \begin{matrix} Var(\widehat{K}) & Cov(\widehat{K},\widehat{n}) \\ Cov(\widehat{n},\widehat{K}) & Var(\widehat{n}) \\ \end{matrix} \right]={{\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{K}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial K\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial K} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right]}^{-1}} }[/math]


Confidence Bounds on Reliability


The bounds on reliability at a given time, [math]\displaystyle{ T }[/math] , are estimated by:


[math]\displaystyle{ \begin{align} & {{R}_{U}}= & {{e}^{-\tfrac{T}{{{m}_{U}}}}} \\ & {{R}_{L}}= & {{e}^{-\tfrac{T}{{{m}_{L}}}}} \end{align} }[/math]


Confidence Bounds on Time


The bounds on time (ML estimate of time) for a given reliability are estimated by first solving the reliability function with respect to time:


[math]\displaystyle{ \widehat{T}=-\widehat{m}\cdot \ln (R) }[/math]


The corresponding confidence bounds are estimated from:


[math]\displaystyle{ \begin{align} & {{T}_{U}}= & -{{m}_{U}}\cdot \ln (R) \\ & {{T}_{L}}= & -{{m}_{L}}\cdot \ln (R) \end{align} }[/math]


Approximate Confidence Bounds on IPL-Weibull


Bounds on the Parameters


Using the same approach as previously discussed ( [math]\displaystyle{ \widehat{\beta } }[/math] and [math]\displaystyle{ \widehat{K} }[/math] positive parameters):


[math]\displaystyle{ \begin{align} & {{\beta }_{U}}= & \widehat{\beta }\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{\beta })}}{\widehat{\beta }}}} \\ & {{\beta }_{L}}= & \widehat{\beta }\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{\beta })}}{\widehat{\beta }}}} \end{align} }[/math]


[math]\displaystyle{ \begin{align} & {{K}_{U}}= & \widehat{K}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{K})}}{\widehat{K}}}} \\ & {{K}_{L}}= & \widehat{K}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{K})}}{\widehat{K}}}} \end{align} }[/math]


and:


[math]\displaystyle{ \begin{align} & {{n}_{U}}= & \widehat{n}+{{K}_{\alpha }}\sqrt{Var(\widehat{n})} \\ & {{n}_{L}}= & \widehat{n}-{{K}_{\alpha }}\sqrt{Var(\widehat{n})} \end{align} }[/math]



The variances and covariances of [math]\displaystyle{ \beta , }[/math] [math]\displaystyle{ K, }[/math] and [math]\displaystyle{ n }[/math] are estimated from the local Fisher matrix (evaluated at [math]\displaystyle{ \widehat{\beta }, }[/math] [math]\displaystyle{ \widehat{K}, }[/math] [math]\displaystyle{ \widehat{n}) }[/math] as follows:

[math]\displaystyle{ \left[ \begin{matrix} Var(\widehat{\beta }) & Cov(\widehat{\beta },\widehat{K}) & Cov(\widehat{\beta },\widehat{n}) \\ Cov(\widehat{K},\widehat{\beta }) & Var(\widehat{K}) & Cov(\widehat{K},\widehat{n}) \\ Cov(\widehat{n},\widehat{\beta }) & Cov(\widehat{n},\widehat{K}) & Var(\widehat{n}) \\ \end{matrix} \right]={{\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial K} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \beta \partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial K\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{K}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial K\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial \beta } & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial A} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right]}^{-1}} }[/math]


Confidence Bounds on Reliability


The reliability function (ML estimate) for the IPL-Weibull model is given by:


[math]\displaystyle{ \widehat{R}(T,V)={{e}^{-{{\left( \widehat{K}{{V}^{\widehat{n}}}T \right)}^{\widehat{\beta }}}}} }[/math]


or:


[math]\displaystyle{ \widehat{R}(T,V)={{e}^{-{{e}^{\ln \left[ {{\left( \widehat{K}{{V}^{\widehat{n}}}T \right)}^{\widehat{\beta }}} \right]}}}} }[/math]


Setting:


[math]\displaystyle{ \widehat{u}=\ln \left[ \left( \widehat{K}V\widehat{^{n}}T \right)\widehat{^{\beta }} \right] }[/math]


or:


[math]\displaystyle{ \widehat{u}=\widehat{\beta }\left[ \ln (T)+\ln (\widehat{K})+\widehat{n}\ln (V) \right] }[/math]


The reliability function now becomes:


[math]\displaystyle{ \widehat{R}(T,V)={{e}^{-e\widehat{^{u}}}} }[/math]


The next step is to find the upper and lower bounds on [math]\displaystyle{ \widehat{u} }[/math] :

[math]\displaystyle{ {{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]


[math]\displaystyle{ {{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]


where:


[math]\displaystyle{ \begin{align} Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial K} \right)}^{2}}Var(\widehat{K}) +{{\left( \frac{\partial \widehat{u}}{\partial n} \right)}^{2}}Var(\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial K} \right)Cov(\widehat{\beta },\widehat{K})\\ & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{\beta },\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial K} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{K},\widehat{n}) \end{align} }[/math]


or:


[math]\displaystyle{ \begin{align} & Var(\widehat{u})= & {{\left( \frac{\widehat{u}}{\widehat{\beta }} \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\widehat{\beta }}{\widehat{K}} \right)}^{2}}Var(\widehat{K}) +{{\widehat{\beta }}^{2}}{{\left[ \ln (V) \right]}^{2}}Var(\widehat{n}) +\frac{2\widehat{u}}{\widehat{K}}Cov(\widehat{\beta },\widehat{K})+2\widehat{u}\ln (V)Cov(\widehat{\beta },\widehat{n})+\frac{2{{\widehat{\beta }}^{2}}\ln (V)}{\widehat{K}}Cov(\widehat{K},\widehat{n}) \end{align} }[/math]


The upper and lower bounds on reliability are:


[math]\displaystyle{ \begin{align} & {{R}_{U}}= & {{e}^{-{{e}^{\left( {{u}_{L}} \right)}}}} \\ & {{R}_{L}}= & {{e}^{-{{e}^{\left( {{u}_{U}} \right)}}}} \end{align} }[/math]


Confidence Bounds on Time


The bounds on time for a given reliability (ML estimate of time) are estimated by first solving the reliability function with respect to time:


[math]\displaystyle{ \begin{align} \ln (R) &=\ -{{\left( \widehat{K}{{V}^{\widehat{n}}}\widehat{T} \right)}^{\widehat{\beta }}} \\ \ln (-\ln (R)) &=\ \widehat{\beta }\left[ \ln (\widehat{T})+\ln (\widehat{K})+\widehat{n}\ln (V) \right] \end{align} }[/math]


or:


[math]\displaystyle{ \widehat{u}=\frac{1}{\widehat{\beta }}\ln (-\ln (R))-\ln (\widehat{K})-\widehat{n}\ln (V) }[/math]


where [math]\displaystyle{ \widehat{u}=\ln \widehat{T}. }[/math] The upper and lower bounds on [math]\displaystyle{ u }[/math] are estimated from:


[math]\displaystyle{ \begin{align} & {{u}_{U}}= & \widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} \\ & {{u}_{L}}= & \widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} \end{align} }[/math]


where:


[math]\displaystyle{ \begin{align} Var(\widehat{u})= & {{\left( \frac{\partial \widehat{u}}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial \widehat{u}}{\partial K} \right)}^{2}}Var(\widehat{K}) +{{\left( \frac{\partial \widehat{u}}{\partial n} \right)}^{2}}Var(\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial K} \right)Cov(\widehat{\beta },\widehat{K}) \\ & +2\left( \frac{\partial \widehat{u}}{\partial \beta } \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{\beta },\widehat{n}) +2\left( \frac{\partial \widehat{u}}{\partial K} \right)\left( \frac{\partial \widehat{u}}{\partial n} \right)Cov(\widehat{K},\widehat{n}) \end{align} }[/math]


or:


[math]\displaystyle{ \begin{align} Var(\widehat{u})= & \frac{1}{{{\widehat{\beta }}^{4}}}{{\left[ \ln (-\ln (R)) \right]}^{2}}Var(\widehat{\beta })+\frac{1}{{{\widehat{K}}^{2}}}Var(\widehat{K}) +{{\left[ \ln (V) \right]}^{2}}Var(\widehat{n}) +\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}\widehat{K}}Cov(\widehat{\beta },\widehat{K}) \\ & +\frac{2\ln (-\ln (R))}{{{\widehat{\beta }}^{2}}}\ln (V)Cov(\widehat{\beta },\widehat{n}) +\frac{2\ln (V)}{\widehat{K}}Cov(\widehat{K},\widehat{n}) \end{align} }[/math]


The upper and lower bounds on time are then found by:


[math]\displaystyle{ \begin{align} & {{T}_{U}}= & {{e}^{{{u}_{U}}}} \\ & {{T}_{L}}= & {{e}^{{{u}_{L}}}} \end{align} }[/math]


Approximate Confidence Bounds on IPL-Lognormal


Bounds on the Parameters


Since the standard deviation, [math]\displaystyle{ {{\widehat{\sigma }}_{T}} }[/math] , and [math]\displaystyle{ \widehat{K} }[/math] are positive parameters, then [math]\displaystyle{ \ln ({{\widehat{\sigma }}_{{{T}'}}}) }[/math] and [math]\displaystyle{ \ln (\widehat{K}) }[/math] are treated as normally distributed, and the bounds are estimated from:

[math]\displaystyle{ \begin{align} & {{\sigma }_{U}}= & {{\widehat{\sigma }}_{{{T}'}}}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}}\text{ (Upper bound)} \\ & {{\sigma }_{L}}= & \frac{{{\widehat{\sigma }}_{{{T}'}}}}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var({{\widehat{\sigma }}_{{{T}'}}})}}{{{\widehat{\sigma }}_{{{T}'}}}}}}}\text{ (Lower bound)} \end{align} }[/math]


and:


[math]\displaystyle{ \begin{align} & {{K}_{U}}= & \widehat{K}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{K})}}{\widehat{K}}}}\text{ (Upper bound)} \\ & {{K}_{L}}= & \frac{\widehat{K}}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{K})}}{\widehat{K}}}}}\text{ (Lower bound)} \end{align} }[/math]


The lower and upper bounds on [math]\displaystyle{ n }[/math] , are estimated from:


[math]\displaystyle{ \begin{align} & {{n}_{U}}= & \widehat{n}+{{K}_{\alpha }}\sqrt{Var(\widehat{n})}\text{ (Upper bound)} \\ & {{n}_{L}}= & \widehat{n}-{{K}_{\alpha }}\sqrt{Var(\widehat{n})}\text{ (Lower bound)} \end{align} }[/math]


The variances and covariances of [math]\displaystyle{ A, }[/math] [math]\displaystyle{ B, }[/math] and [math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math] are estimated from the local Fisher matrix (evaluated at [math]\displaystyle{ \widehat{A}, }[/math] [math]\displaystyle{ \widehat{B} }[/math] , [math]\displaystyle{ {{\widehat{\sigma }}_{{{T}'}}}), }[/math] as follows:


[math]\displaystyle{ \left[ \begin{matrix} Var({{\widehat{\sigma }}_{{{T}'}}}) & Cov(\widehat{K},{{\widehat{\sigma }}_{{{T}'}}}) & Cov(\widehat{n},{{\widehat{\sigma }}_{{{T}'}}}) \\ Cov({{\widehat{\sigma }}_{{{T}'}}},\widehat{K}) & Var(\widehat{K}) & Cov(\widehat{K},\widehat{n}) \\ Cov({{\widehat{\sigma }}_{{{T}'}}},\widehat{n}) & Cov(\widehat{n},\widehat{K}) & Var\left( \widehat{n} \right) \\ \end{matrix} \right]={{\left[ F \right]}^{-1}} }[/math]


where:


[math]\displaystyle{ F=\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial \sigma _{{{T}'}}^{2}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial K} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\sigma }_{{{T}'}}}\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial K\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{K}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial K\partial n} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial {{\sigma }_{{{T}'}}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial n\partial K} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{n}^{2}}} \\ \end{matrix} \right] }[/math]


Bounds on Reliability


The reliability of the lognormal distribution is:


[math]\displaystyle{ R({T}',V;K,n,{{\sigma }_{{{T}'}}})=\mathop{}_{{{T}'}}^{\infty }\frac{1}{{{\widehat{\sigma }}_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t+\ln (\widehat{K})+\widehat{n}\ln (V)}{{{\widehat{\sigma }}_{{{T}'}}}} \right)}^{2}}}}dt }[/math]


Let [math]\displaystyle{ \widehat{z}(t,V;K,n,{{\sigma }_{T}})=\tfrac{t+\ln (\widehat{K})+\widehat{n}\ln (V)}{{{\widehat{\sigma }}_{{{T}'}}}}, }[/math] then [math]\displaystyle{ \tfrac{d\widehat{z}}{dt}=\tfrac{1}{{{\widehat{\sigma }}_{{{T}'}}}}. }[/math]


For [math]\displaystyle{ t={T}' }[/math] , [math]\displaystyle{ \widehat{z}=\tfrac{{T}'+\ln (\widehat{K})+\widehat{n}\ln (V)}{{{\widehat{\sigma }}_{{{T}'}}}} }[/math] , and for [math]\displaystyle{ t=\infty , }[/math] [math]\displaystyle{ \widehat{z}=\infty . }[/math] The above equation then becomes:


[math]\displaystyle{ R(\widehat{z})=\mathop{}_{\widehat{z}({T}',V)}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz }[/math]


The bounds on [math]\displaystyle{ z }[/math] are estimated from:


[math]\displaystyle{ \begin{align} & {{z}_{U}}= & \widehat{z}+{{K}_{\alpha }}\sqrt{Var(\widehat{z})} \\ & {{z}_{L}}= & \widehat{z}-{{K}_{\alpha }}\sqrt{Var(\widehat{z})} \end{align} }[/math]


where:

.

[math]\displaystyle{ \begin{align} & Var(\widehat{z})= & \left( \frac{\partial \widehat{z}}{\partial K} \right)_{\widehat{K}}^{2}Var(\widehat{K})+\left( \frac{\partial \widehat{z}}{\partial n} \right)_{\widehat{n}}^{2}Var(\widehat{n})+\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)_{{{\widehat{\sigma }}_{{{T}'}}}}^{2}Var({{\widehat{\sigma }}_{T}}) \\ & & +2{{\left( \frac{\partial \widehat{z}}{\partial K} \right)}_{\widehat{K}}}{{\left( \frac{\partial \widehat{z}}{\partial n} \right)}_{\widehat{n}}}Cov\left( \widehat{K},\widehat{n} \right) \\ & & +2{{\left( \frac{\partial \widehat{z}}{\partial K} \right)}_{\widehat{K}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{K},{{\widehat{\sigma }}_{T}} \right) \\ & & +2{{\left( \frac{\partial \widehat{z}}{\partial n} \right)}_{\widehat{n}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{n},{{\widehat{\sigma }}_{T}} \right) \end{align} }[/math].


or:


[math]\displaystyle{ \begin{align} & Var(\widehat{z})= & \frac{1}{\widehat{\sigma }_{{{T}'}}^{2}}[\frac{1}{{{K}^{2}}}Var(\widehat{K})+\ln {{(V)}^{2}}Var(\widehat{n})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\ & & +\frac{2\ln (V)}{K}Cov\left( \widehat{K},\widehat{n} \right)-\frac{2\widehat{z}}{K}Cov\left( \widehat{K},{{\widehat{\sigma }}_{{{T}'}}} \right)-2\widehat{z}\ln (V)Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right)] \end{align} }[/math]


The upper and lower bounds on reliability are:


[math]\displaystyle{ \begin{align} & {{R}_{U}}= & \mathop{}_{{{z}_{L}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Upper bound)} \\ & {{R}_{L}}= & \mathop{}_{{{z}_{U}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Lower bound)} \end{align} }[/math]


Confidence Bounds on Time


The bounds around time, for a given lognormal percentile (unreliability), are estimated by first solving the reliability equation with respect to time, as follows:


[math]\displaystyle{ {T}'(V;\widehat{K},\widehat{n},{{\widehat{\sigma }}_{{{T}'}}})=-\ln (\widehat{K})-\widehat{n}\ln (V)+z\cdot {{\widehat{\sigma }}_{{{T}'}}} }[/math]


where:


[math]\displaystyle{ \begin{align} & {T}'(V;\widehat{K},\widehat{n},{{\widehat{\sigma }}_{{{T}'}}})= & \ln (T) \\ & z= & {{\Phi }^{-1}}\left[ F({T}') \right] \end{align} }[/math]


and:


[math]\displaystyle{ \Phi (z)=\frac{1}{\sqrt{2\pi }}\mathop{}_{-\infty }^{z({T}')}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz }[/math]


The next step is to calculate the variance of [math]\displaystyle{ {T}'(V;\widehat{K},\widehat{n},{{\widehat{\sigma }}_{{{T}'}}}): }[/math]


[math]\displaystyle{ \begin{align} & Var({T}')= & {{\left( \frac{\partial {T}'}{\partial K} \right)}^{2}}Var(\widehat{K})+{{\left( \frac{\partial {T}'}{\partial n} \right)}^{2}}Var(\widehat{n})+{{\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\ & & +2\left( \frac{\partial {T}'}{\partial K} \right)\left( \frac{\partial {T}'}{\partial n} \right)Cov\left( \widehat{K},\widehat{n} \right) \\ & & +2\left( \frac{\partial {T}'}{\partial K} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{K},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ & & +2\left( \frac{\partial {T}'}{\partial n} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]


or:


[math]\displaystyle{ \begin{align} & Var({T}')= & \frac{1}{{{K}^{2}}}Var(\widehat{K})+\ln {{(V)}^{2}}Var(\widehat{n})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\ & & +\frac{2\ln (V)}{K}Cov\left( \widehat{K},\widehat{n} \right) \\ & & -\frac{2\widehat{z}}{K}Cov\left( \widehat{K},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ & & -2\widehat{z}\ln (V)Cov\left( \widehat{n},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]


The upper and lower bounds are then found by:


[math]\displaystyle{ \begin{align} & T_{U}^{\prime }= & \ln {{T}_{U}}={T}'+{{K}_{\alpha }}\sqrt{Var({T}')} \\ & T_{L}^{\prime }= & \ln {{T}_{L}}={T}'-{{K}_{\alpha }}\sqrt{Var({T}')} \end{align} }[/math]


Solving for [math]\displaystyle{ {{T}_{U}} }[/math] and [math]\displaystyle{ {{T}_{L}} }[/math] yields:


[math]\displaystyle{ \begin{align} & {{T}_{U}}= & {{e}^{T_{U}^{\prime }}}\text{ (Upper bound)} \\ & {{T}_{L}}= & {{e}^{T_{L}^{\prime }}}\text{ (Lower bound)} \end{align} }[/math]