Template:Alta al rf

From ReliaWiki
Jump to navigation Jump to search

Arrhenius-Lognormal Reliability Function


The reliability for a mission of time [math]\displaystyle{ T }[/math] , starting at age 0, for the Arrhenius-lognormal model is determined by:


[math]\displaystyle{ R(T,V)=\int_{T}^{\infty }f(t,V)dt }[/math]

or:

[math]\displaystyle{ R(T,V)=\int_{{{T}^{^{\prime }}}}^{\infty }\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\ln (C)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}dt }[/math]


There is no closed form solution for the lognormal reliability function. Solutions can be obtained via the use of standard normal tables. Since the application automatically solves for the reliability, we will not discuss manual solution methods.