The Gamma Distribution: Difference between revisions
No edit summary |
|||
Line 7: | Line 7: | ||
The <math>pdf</math> of the gamma distribution is given by: | The <math>pdf</math> of the gamma distribution is given by: | ||
<math>f(T)=\frac{{{e}^{kz-{{e}^{z}}}}}{t\Gamma (k)}</math> | ::<math>f(T)=\frac{{{e}^{kz-{{e}^{z}}}}}{t\Gamma (k)}</math> | ||
where: | where: | ||
<math>z=\ln (t)-\mu </math> | ::<math>z=\ln (t)-\mu </math> | ||
and: | and: | ||
<math>\begin{align} | ::<math>\begin{align} | ||
& {{e}^{\mu }}= & \text{scale parameter} \\ | & {{e}^{\mu }}= & \text{scale parameter} \\ | ||
& k= & \text{shape parameter} | & k= & \text{shape parameter} | ||
Line 21: | Line 21: | ||
where <math>0<t<\infty </math> , <math>-\infty <\mu <\infty </math> and <math>k>0</math> . | where <math>0<t<\infty </math> , <math>-\infty <\mu <\infty </math> and <math>k>0</math> . | ||
The Gamma Reliability Function | |||
===The Gamma Reliability Function=== | |||
The reliability for a mission of time <math>T</math> for the gamma distribution is: | The reliability for a mission of time <math>T</math> for the gamma distribution is: | ||
<math>R=1-{{\Gamma }_{1}}(k;{{e}^{z}})</math> | ::<math>R=1-{{\Gamma }_{1}}(k;{{e}^{z}})</math> | ||
Line 32: | Line 34: | ||
<math>\overline{T}=k{{e}^{\mu }}</math> | ::<math>\overline{T}=k{{e}^{\mu }}</math> | ||
Line 38: | Line 40: | ||
<math>\tilde{T}=(k-1){{e}^{\mu }}</math> | ::<math>\tilde{T}=(k-1){{e}^{\mu }}</math> | ||
The median is: | The median is: | ||
<math>\widehat{T}={{e}^{\mu +\ln (\Gamma _{1}^{-1}(0.5;k))}}</math> | ::<math>\widehat{T}={{e}^{\mu +\ln (\Gamma _{1}^{-1}(0.5;k))}}</math> | ||
===The Gamma Standard Deviation=== | ===The Gamma Standard Deviation=== | ||
The standard deviation for the gamma distribution is: | The standard deviation for the gamma distribution is: | ||
<math>{{\sigma }_{T}}=\sqrt{k}{{e}^{\mu }}</math> | ::<math>{{\sigma }_{T}}=\sqrt{k}{{e}^{\mu }}</math> | ||
Line 54: | Line 56: | ||
The gamma reliable life is: | The gamma reliable life is: | ||
<math>{{T}_{R}}={{e}^{\mu +\ln (\Gamma _{1}^{-1}(1-R;k))}}</math> | ::<math>{{T}_{R}}={{e}^{\mu +\ln (\Gamma _{1}^{-1}(1-R;k))}}</math> | ||
===The Gamma Failure Rate Function=== | ===The Gamma Failure Rate Function=== | ||
The instantaneous gamma failure rate is given by: | The instantaneous gamma failure rate is given by: | ||
<math>\lambda =\frac{{{e}^{kz-{{e}^{z}}}}}{t\Gamma (k)(1-{{\Gamma }_{1}}(k;{{e}^{z}}))}</math> | ::<math>\lambda =\frac{{{e}^{kz-{{e}^{z}}}}}{t\Gamma (k)(1-{{\Gamma }_{1}}(k;{{e}^{z}}))}</math> | ||
===Characteristics of the Gamma Distribution=== | ===Characteristics of the Gamma Distribution=== | ||
Line 78: | Line 80: | ||
As <math>T\to \infty ,\lambda (T)\to \tfrac{1}{{{e}^{\mu }}}.</math> | As <math>T\to \infty ,\lambda (T)\to \tfrac{1}{{{e}^{\mu }}}.</math> | ||
[[File:ldaGD10.1.gif|center]] | |||
For <math>k=1</math> : | For <math>k=1</math> : | ||
Line 92: | Line 95: | ||
• The mode does not exist. | • The mode does not exist. | ||
[[File:ldaGD10.2.gif|center]] | |||
For <math>0<k<1</math> : | For <math>0<k<1</math> : | ||
Line 108: | Line 113: | ||
• The mode does not exist. | • The mode does not exist. | ||
[[File:ldaGD10.3.gif|center]] | |||
===Confidence Bounds=== | ===Confidence Bounds=== | ||
Line 114: | Line 121: | ||
The lower and upper bounds on the mean, <math>\widehat{\mu }</math> , are estimated from: | The lower and upper bounds on the mean, <math>\widehat{\mu }</math> , are estimated from: | ||
<math>\begin{align} | ::<math>\begin{align} | ||
& {{\mu }_{U}}= & \widehat{\mu }+{{K}_{\alpha }}\sqrt{Var(\widehat{\mu })}\text{ (upper bound)} \\ | & {{\mu }_{U}}= & \widehat{\mu }+{{K}_{\alpha }}\sqrt{Var(\widehat{\mu })}\text{ (upper bound)} \\ | ||
& {{\mu }_{L}}= & \widehat{\mu }-{{K}_{\alpha }}\sqrt{Var(\widehat{\mu })}\text{ (lower bound)} | & {{\mu }_{L}}= & \widehat{\mu }-{{K}_{\alpha }}\sqrt{Var(\widehat{\mu })}\text{ (lower bound)} | ||
Line 122: | Line 129: | ||
Since the standard deviation, <math>\widehat{\sigma }</math> , must be positive, <math>\ln (\widehat{\sigma })</math> is treated as normally distributed and the bounds are estimated from: | Since the standard deviation, <math>\widehat{\sigma }</math> , must be positive, <math>\ln (\widehat{\sigma })</math> is treated as normally distributed and the bounds are estimated from: | ||
<math>\begin{align} | ::<math>\begin{align} | ||
& {{k}_{U}}= & \widehat{k}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{k})}}{{\hat{k}}}}}\text{ (upper bound)} \\ | & {{k}_{U}}= & \widehat{k}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{k})}}{{\hat{k}}}}}\text{ (upper bound)} \\ | ||
& {{k}_{L}}= & \frac{\widehat{\sigma }}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{k})}}{\widehat{k}}}}}\text{ (lower bound)} | & {{k}_{L}}= & \frac{\widehat{\sigma }}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{k})}}{\widehat{k}}}}}\text{ (lower bound)} | ||
Line 129: | Line 136: | ||
where <math>{{K}_{\alpha }}</math> is defined by: | where <math>{{K}_{\alpha }}</math> is defined by: | ||
<math>\alpha =\frac{1}{\sqrt{2\pi }}\int_{{{K}_{\alpha }}}^{\infty }{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }})</math> | ::<math>\alpha =\frac{1}{\sqrt{2\pi }}\int_{{{K}_{\alpha }}}^{\infty }{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }})</math> | ||
If <math>\delta </math> is the confidence level, then <math>\alpha =\tfrac{1-\delta }{2}</math> for the two-sided bounds and <math>\alpha =1-\delta </math> for the one-sided bounds. | If <math>\delta </math> is the confidence level, then <math>\alpha =\tfrac{1-\delta }{2}</math> for the two-sided bounds and <math>\alpha =1-\delta </math> for the one-sided bounds. | ||
Line 135: | Line 142: | ||
The variances and covariances of <math>\widehat{\mu }</math> and <math>\widehat{k}</math> are estimated from the Fisher matrix, as follows: | The variances and covariances of <math>\widehat{\mu }</math> and <math>\widehat{k}</math> are estimated from the Fisher matrix, as follows: | ||
<math>\left( \begin{matrix} | ::<math>\left( \begin{matrix} | ||
\widehat{Var}\left( \widehat{\mu } \right) & \widehat{Cov}\left( \widehat{\mu },\widehat{k} \right) \\ | \widehat{Var}\left( \widehat{\mu } \right) & \widehat{Cov}\left( \widehat{\mu },\widehat{k} \right) \\ | ||
\widehat{Cov}\left( \widehat{\mu },\widehat{k} \right) & \widehat{Var}\left( \widehat{k} \right) \\ | \widehat{Cov}\left( \widehat{\mu },\widehat{k} \right) & \widehat{Var}\left( \widehat{k} \right) \\ | ||
Line 150: | Line 157: | ||
The reliability of the gamma distribution is: | The reliability of the gamma distribution is: | ||
<math>\widehat{R}(T;\hat{\mu },\hat{k})=1-{{\Gamma }_{1}}(\widehat{k};{{e}^{\widehat{z}}})</math> | ::<math>\widehat{R}(T;\hat{\mu },\hat{k})=1-{{\Gamma }_{1}}(\widehat{k};{{e}^{\widehat{z}}})</math> | ||
where: | where: | ||
<math>\widehat{z}=\ln (t)-\widehat{\mu }</math> | ::<math>\widehat{z}=\ln (t)-\widehat{\mu }</math> | ||
The upper and lower bounds on reliability are: | The upper and lower bounds on reliability are: | ||
<math>{{R}_{U}}=\frac{\widehat{R}}{\widehat{R}+(1-\widehat{R})\exp (\tfrac{-{{K}_{\alpha }}\sqrt{Var(\widehat{R})\text{ }}}{\widehat{R}(1-\widehat{R})})}\text{ (upper bound)}</math> | ::<math>{{R}_{U}}=\frac{\widehat{R}}{\widehat{R}+(1-\widehat{R})\exp (\tfrac{-{{K}_{\alpha }}\sqrt{Var(\widehat{R})\text{ }}}{\widehat{R}(1-\widehat{R})})}\text{ (upper bound)}</math> | ||
<math>{{R}_{L}}=\frac{\widehat{R}}{\widehat{R}+(1-\widehat{R})\exp (\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{R})\text{ }}}{\widehat{R}(1-\widehat{R})})}\text{ (lower bound)}</math> | ::<math>{{R}_{L}}=\frac{\widehat{R}}{\widehat{R}+(1-\widehat{R})\exp (\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{R})\text{ }}}{\widehat{R}(1-\widehat{R})})}\text{ (lower bound)}</math> | ||
where: | where: | ||
<math>Var(\widehat{R})={{(\frac{\partial R}{\partial \mu })}^{2}}Var(\widehat{\mu })+2(\frac{\partial R}{\partial \mu })(\frac{\partial R}{\partial k})Cov(\widehat{\mu },\widehat{k})+{{(\frac{\partial z}{\partial k})}^{2}}Var(\widehat{k})</math> | ::<math>Var(\widehat{R})={{(\frac{\partial R}{\partial \mu })}^{2}}Var(\widehat{\mu })+2(\frac{\partial R}{\partial \mu })(\frac{\partial R}{\partial k})Cov(\widehat{\mu },\widehat{k})+{{(\frac{\partial z}{\partial k})}^{2}}Var(\widehat{k})</math> | ||
===Bounds on Time=== | ===Bounds on Time=== | ||
Line 170: | Line 177: | ||
<math>\widehat{T}(\widehat{\mu },\widehat{\sigma })=\widehat{\mu }+\widehat{\sigma }z</math> | ::<math>\widehat{T}(\widehat{\mu },\widehat{\sigma })=\widehat{\mu }+\widehat{\sigma }z</math> | ||
Line 176: | Line 183: | ||
<math>z=\ln (-\ln (R))</math> | ::<math>z=\ln (-\ln (R))</math> | ||
<math>Var(\widehat{T})={{(\frac{\partial T}{\partial \mu })}^{2}}Var(\widehat{\mu })+2(\frac{\partial T}{\partial \mu })(\frac{\partial T}{\partial \sigma })Cov(\widehat{\mu },\widehat{\sigma })+{{(\frac{\partial T}{\partial \sigma })}^{2}}Var(\widehat{\sigma })</math> | ::<math>Var(\widehat{T})={{(\frac{\partial T}{\partial \mu })}^{2}}Var(\widehat{\mu })+2(\frac{\partial T}{\partial \mu })(\frac{\partial T}{\partial \sigma })Cov(\widehat{\mu },\widehat{\sigma })+{{(\frac{\partial T}{\partial \sigma })}^{2}}Var(\widehat{\sigma })</math> | ||
or: | or: | ||
<math>Var(\widehat{T})=Var(\widehat{\mu })+2\widehat{z}Cov(\widehat{\mu },\widehat{\sigma })+{{\widehat{z}}^{2}}Var(\widehat{\sigma })</math> | ::<math>Var(\widehat{T})=Var(\widehat{\mu })+2\widehat{z}Cov(\widehat{\mu },\widehat{\sigma })+{{\widehat{z}}^{2}}Var(\widehat{\sigma })</math> | ||
Line 192: | Line 197: | ||
<math>\begin{align} | ::<math>\begin{align} | ||
& {{T}_{U}}= & \hat{T}+{{K}_{\alpha }}\sqrt{Var(\hat{T})}\text{ (Upper bound)} \\ | & {{T}_{U}}= & \hat{T}+{{K}_{\alpha }}\sqrt{Var(\hat{T})}\text{ (Upper bound)} \\ | ||
& {{T}_{L}}= & \hat{T}-{{K}_{\alpha }}\sqrt{Var(\hat{T})}\text{ (Lower bound)} | & {{T}_{L}}= & \hat{T}-{{K}_{\alpha }}\sqrt{Var(\hat{T})}\text{ (Lower bound)} | ||
Line 201: | Line 206: | ||
<math>\begin{matrix} | ::<math>\begin{matrix} | ||
\text{61} & \text{50} & \text{67} & \text{49} & \text{53} & \text{62} \\ | \text{61} & \text{50} & \text{67} & \text{49} & \text{53} & \text{62} \\ | ||
\text{53} & \text{61} & \text{43} & \text{65} & \text{53} & \text{56} \\ | \text{53} & \text{61} & \text{43} & \text{65} & \text{53} & \text{56} \\ | ||
Line 210: | Line 215: | ||
Fitting the gamma distribution to this data, using maximum likelihood as the analysis method, gives the following parameters: | Fitting the gamma distribution to this data, using maximum likelihood as the analysis method, gives the following parameters: | ||
<math>\begin{align} | ::<math>\begin{align} | ||
& \hat{\mu }= & 7.72E-02 \\ | & \hat{\mu }= & 7.72E-02 \\ | ||
& \hat{k}= & 50.4908 | & \hat{k}= & 50.4908 | ||
Line 217: | Line 222: | ||
Using rank regression on <math>X,</math> the estimated parameters are: | Using rank regression on <math>X,</math> the estimated parameters are: | ||
<math>\begin{align} | ::<math>\begin{align} | ||
& \hat{\mu }= & 0.2915 \\ | & \hat{\mu }= & 0.2915 \\ | ||
& \hat{k}= & 41.1726 | & \hat{k}= & 41.1726 | ||
Line 225: | Line 230: | ||
Using rank regression on <math>Y,</math> the estimated parameters are: | Using rank regression on <math>Y,</math> the estimated parameters are: | ||
<math>\begin{align} | ::<math>\begin{align} | ||
& \hat{\mu }= & 0.2915 \\ | & \hat{\mu }= & 0.2915 \\ | ||
& \hat{k}= & 41.1726 | & \hat{k}= & 41.1726 | ||
\end{align}</math> | \end{align}</math> |
Revision as of 21:58, 22 July 2011
The Gamma Distribution
The gamma distribution is a flexible life distribution model that may offer a good fit to some sets of failure data. It is not, however, widely used as a life distribution model for common failure mechanisms. The gamma distribution does arise naturally as the time-to-first-fail distribution for a system with standby exponentially distributed backups, and is also a good fit for the sum of independent exponential random variables. The gamma distribution is sometimes called the Erlang distribution, which is used frequently in queuing theory applications. [32]
Gamma Probability Density Function
The [math]\displaystyle{ pdf }[/math] of the gamma distribution is given by:
- [math]\displaystyle{ f(T)=\frac{{{e}^{kz-{{e}^{z}}}}}{t\Gamma (k)} }[/math]
where:
- [math]\displaystyle{ z=\ln (t)-\mu }[/math]
and:
- [math]\displaystyle{ \begin{align} & {{e}^{\mu }}= & \text{scale parameter} \\ & k= & \text{shape parameter} \end{align} }[/math]
where [math]\displaystyle{ 0\lt t\lt \infty }[/math] , [math]\displaystyle{ -\infty \lt \mu \lt \infty }[/math] and [math]\displaystyle{ k\gt 0 }[/math] .
The Gamma Reliability Function
The reliability for a mission of time [math]\displaystyle{ T }[/math] for the gamma distribution is:
- [math]\displaystyle{ R=1-{{\Gamma }_{1}}(k;{{e}^{z}}) }[/math]
The Gamma Mean, Median and Mode
The gamma mean or MTTF is:
- [math]\displaystyle{ \overline{T}=k{{e}^{\mu }} }[/math]
The mode exists if [math]\displaystyle{ k\gt 1 }[/math] and is given by:
- [math]\displaystyle{ \tilde{T}=(k-1){{e}^{\mu }} }[/math]
The median is:
- [math]\displaystyle{ \widehat{T}={{e}^{\mu +\ln (\Gamma _{1}^{-1}(0.5;k))}} }[/math]
The Gamma Standard Deviation
The standard deviation for the gamma distribution is:
- [math]\displaystyle{ {{\sigma }_{T}}=\sqrt{k}{{e}^{\mu }} }[/math]
The Gamma Reliable Life
The gamma reliable life is:
- [math]\displaystyle{ {{T}_{R}}={{e}^{\mu +\ln (\Gamma _{1}^{-1}(1-R;k))}} }[/math]
The Gamma Failure Rate Function
The instantaneous gamma failure rate is given by:
- [math]\displaystyle{ \lambda =\frac{{{e}^{kz-{{e}^{z}}}}}{t\Gamma (k)(1-{{\Gamma }_{1}}(k;{{e}^{z}}))} }[/math]
Characteristics of the Gamma Distribution
Some of the specific characteristics of the gamma distribution are the following:
For [math]\displaystyle{ k\gt 1 }[/math] :
• As [math]\displaystyle{ T\to 0,\infty }[/math] , [math]\displaystyle{ f(T)\to 0. }[/math]
• [math]\displaystyle{ f(T) }[/math] increases from 0 to the mode value and decreases thereafter.
• If [math]\displaystyle{ k\le 2 }[/math] then [math]\displaystyle{ pdf }[/math] has one inflection point at [math]\displaystyle{ T={{e}^{\mu }}\sqrt{k-1}( }[/math] [math]\displaystyle{ \sqrt{k-1}+1). }[/math]
• If [math]\displaystyle{ k\gt 2 }[/math] then [math]\displaystyle{ pdf }[/math] has two inflection points for [math]\displaystyle{ T={{e}^{\mu }}\sqrt{k-1}( }[/math] [math]\displaystyle{ \sqrt{k-1}\pm 1). }[/math]
• For a fixed [math]\displaystyle{ k }[/math] , as [math]\displaystyle{ \mu }[/math] increases, the [math]\displaystyle{ pdf }[/math] starts to look more like a straight angle.
As [math]\displaystyle{ T\to \infty ,\lambda (T)\to \tfrac{1}{{{e}^{\mu }}}. }[/math]
For [math]\displaystyle{ k=1 }[/math] :
• Gamma becomes the exponential distribution.
• As [math]\displaystyle{ T\to 0 }[/math] , [math]\displaystyle{ f(T)\to \tfrac{1}{{{e}^{\mu }}}. }[/math]
• As [math]\displaystyle{ T\to \infty ,f(T)\to 0. }[/math]
• The [math]\displaystyle{ pdf }[/math] decreases monotonically and is convex.
• [math]\displaystyle{ \lambda (T)\equiv \tfrac{1}{{{e}^{\mu }}} }[/math] . [math]\displaystyle{ \lambda (T) }[/math] is constant.
• The mode does not exist.
For [math]\displaystyle{ 0\lt k\lt 1 }[/math] :
• As [math]\displaystyle{ T\to 0 }[/math] , [math]\displaystyle{ f(T)\to \infty . }[/math]
• As [math]\displaystyle{ T\to \infty ,f(T)\to 0. }[/math]
• As [math]\displaystyle{ T\to \infty ,\lambda (T)\to \tfrac{1}{{{e}^{\mu }}}. }[/math]
• The [math]\displaystyle{ pdf }[/math] decreases monotonically and is convex.
• As [math]\displaystyle{ \mu }[/math] increases, the [math]\displaystyle{ pdf }[/math] gets stretched out to the right and its height decreases, while maintaining its shape.
• As [math]\displaystyle{ \mu }[/math] decreases, the [math]\displaystyle{ pdf }[/math] shifts towards the left and its height increases.
• The mode does not exist.
Confidence Bounds
The only method available in Weibull++ for confidence bounds for the gamma distribution is the Fisher matrix, which is described next. The complete derivations were presented in detail (for a general function) in Chapter 5.
Bounds on the Parameters
The lower and upper bounds on the mean, [math]\displaystyle{ \widehat{\mu } }[/math] , are estimated from:
- [math]\displaystyle{ \begin{align} & {{\mu }_{U}}= & \widehat{\mu }+{{K}_{\alpha }}\sqrt{Var(\widehat{\mu })}\text{ (upper bound)} \\ & {{\mu }_{L}}= & \widehat{\mu }-{{K}_{\alpha }}\sqrt{Var(\widehat{\mu })}\text{ (lower bound)} \end{align} }[/math]
Since the standard deviation, [math]\displaystyle{ \widehat{\sigma } }[/math] , must be positive, [math]\displaystyle{ \ln (\widehat{\sigma }) }[/math] is treated as normally distributed and the bounds are estimated from:
- [math]\displaystyle{ \begin{align} & {{k}_{U}}= & \widehat{k}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{k})}}{{\hat{k}}}}}\text{ (upper bound)} \\ & {{k}_{L}}= & \frac{\widehat{\sigma }}{{{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{k})}}{\widehat{k}}}}}\text{ (lower bound)} \end{align} }[/math]
where [math]\displaystyle{ {{K}_{\alpha }} }[/math] is defined by:
- [math]\displaystyle{ \alpha =\frac{1}{\sqrt{2\pi }}\int_{{{K}_{\alpha }}}^{\infty }{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }}) }[/math]
If [math]\displaystyle{ \delta }[/math] is the confidence level, then [math]\displaystyle{ \alpha =\tfrac{1-\delta }{2} }[/math] for the two-sided bounds and [math]\displaystyle{ \alpha =1-\delta }[/math] for the one-sided bounds.
The variances and covariances of [math]\displaystyle{ \widehat{\mu } }[/math] and [math]\displaystyle{ \widehat{k} }[/math] are estimated from the Fisher matrix, as follows:
- [math]\displaystyle{ \left( \begin{matrix} \widehat{Var}\left( \widehat{\mu } \right) & \widehat{Cov}\left( \widehat{\mu },\widehat{k} \right) \\ \widehat{Cov}\left( \widehat{\mu },\widehat{k} \right) & \widehat{Var}\left( \widehat{k} \right) \\ \end{matrix} \right)=\left( \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{\mu }^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial \mu \partial k} \\ {} & {} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial \mu \partial k} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{k}^{2}}} \\ \end{matrix} \right)_{\mu =\widehat{\mu },k=\widehat{k}}^{-1} }[/math]
[math]\displaystyle{ \Lambda }[/math] is the log-likelihood function of the gamma distribution, described in Chapter 3 and Appendix C.
Bounds on Reliability
The reliability of the gamma distribution is:
- [math]\displaystyle{ \widehat{R}(T;\hat{\mu },\hat{k})=1-{{\Gamma }_{1}}(\widehat{k};{{e}^{\widehat{z}}}) }[/math]
where:
- [math]\displaystyle{ \widehat{z}=\ln (t)-\widehat{\mu } }[/math]
The upper and lower bounds on reliability are:
- [math]\displaystyle{ {{R}_{U}}=\frac{\widehat{R}}{\widehat{R}+(1-\widehat{R})\exp (\tfrac{-{{K}_{\alpha }}\sqrt{Var(\widehat{R})\text{ }}}{\widehat{R}(1-\widehat{R})})}\text{ (upper bound)} }[/math]
- [math]\displaystyle{ {{R}_{L}}=\frac{\widehat{R}}{\widehat{R}+(1-\widehat{R})\exp (\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{R})\text{ }}}{\widehat{R}(1-\widehat{R})})}\text{ (lower bound)} }[/math]
where:
- [math]\displaystyle{ Var(\widehat{R})={{(\frac{\partial R}{\partial \mu })}^{2}}Var(\widehat{\mu })+2(\frac{\partial R}{\partial \mu })(\frac{\partial R}{\partial k})Cov(\widehat{\mu },\widehat{k})+{{(\frac{\partial z}{\partial k})}^{2}}Var(\widehat{k}) }[/math]
Bounds on Time
The bounds around time for a given gamma percentile (unreliability) are estimated by first solving the reliability equation with respect to time, as follows:
- [math]\displaystyle{ \widehat{T}(\widehat{\mu },\widehat{\sigma })=\widehat{\mu }+\widehat{\sigma }z }[/math]
where:
- [math]\displaystyle{ z=\ln (-\ln (R)) }[/math]
- [math]\displaystyle{ Var(\widehat{T})={{(\frac{\partial T}{\partial \mu })}^{2}}Var(\widehat{\mu })+2(\frac{\partial T}{\partial \mu })(\frac{\partial T}{\partial \sigma })Cov(\widehat{\mu },\widehat{\sigma })+{{(\frac{\partial T}{\partial \sigma })}^{2}}Var(\widehat{\sigma }) }[/math]
or:
- [math]\displaystyle{ Var(\widehat{T})=Var(\widehat{\mu })+2\widehat{z}Cov(\widehat{\mu },\widehat{\sigma })+{{\widehat{z}}^{2}}Var(\widehat{\sigma }) }[/math]
The upper and lower bounds are then found by:
- [math]\displaystyle{ \begin{align} & {{T}_{U}}= & \hat{T}+{{K}_{\alpha }}\sqrt{Var(\hat{T})}\text{ (Upper bound)} \\ & {{T}_{L}}= & \hat{T}-{{K}_{\alpha }}\sqrt{Var(\hat{T})}\text{ (Lower bound)} \end{align} }[/math]
A Gamma Distribution Example
Twenty four units were reliability tested and the following life test data were obtained:
- [math]\displaystyle{ \begin{matrix} \text{61} & \text{50} & \text{67} & \text{49} & \text{53} & \text{62} \\ \text{53} & \text{61} & \text{43} & \text{65} & \text{53} & \text{56} \\ \text{62} & \text{56} & \text{58} & \text{55} & \text{58} & \text{48} \\ \text{66} & \text{44} & \text{48} & \text{58} & \text{43} & \text{40} \\ \end{matrix} }[/math]
Fitting the gamma distribution to this data, using maximum likelihood as the analysis method, gives the following parameters:
- [math]\displaystyle{ \begin{align} & \hat{\mu }= & 7.72E-02 \\ & \hat{k}= & 50.4908 \end{align} }[/math]
Using rank regression on [math]\displaystyle{ X, }[/math] the estimated parameters are:
- [math]\displaystyle{ \begin{align} & \hat{\mu }= & 0.2915 \\ & \hat{k}= & 41.1726 \end{align} }[/math]
Using rank regression on [math]\displaystyle{ Y, }[/math] the estimated parameters are:
- [math]\displaystyle{ \begin{align} & \hat{\mu }= & 0.2915 \\ & \hat{k}= & 41.1726 \end{align} }[/math]