General Log-Linear (GLL)-Weibull Model: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 89: | Line 89: | ||
*The model parameters are <math>\,\!\alpha _{0}=-3.156</math> , <math>\,\!\alpha _{1}=4390</math> , <math>\,\!\beta =2.27</math>. | *The model parameters are <math>\,\!\alpha _{0}=-3.156</math> , <math>\,\!\alpha _{1}=4390</math> , <math>\,\!\beta =2.27</math>. | ||
*The variance of each parameter is: <math>\,\!Var\left ( \alpha _{0} \right )=3.08</math> , <math>\,\!Var\left ( \alpha _{1} \right )=484,819.5</math> , <math>\,\!Var\left ( \beta\right )=0.1396</math> . | *The variance of each parameter is: <math>\,\!Var\left ( \alpha _{0} \right )=3.08</math> , <math>\,\!Var\left ( \alpha _{1} \right )=484,819.5</math> , <math>\,\!Var\left ( \beta\right )=0.1396</math> . | ||
*The two-sided 90% confidence intervals for the model parameters are: | *The two-sided 90% confidence intervals for the model parameters are: <math>\,\!\left [ \alpha _{0,L},\alpha _{0,U} \right ]=\left [ -6.044,-0.269 \right ]</math> , <math>\,\!</math> , and <math>\,\!</math> . | ||
*The estimated B10 life at temperature of 35°C is 24,286 hours. The two-sided 90% confidence interval is [10,371, 56,867]. | *The estimated B10 life at temperature of 35°C is 24,286 hours. The two-sided 90% confidence interval is [10,371, 56,867]. | ||
*The estimated reliability at 35°C and 10,000 hours is <math>\,\!R\left ( 10,000 \right )=0.9860</math> . The two-sided 90% confidence interval is [0.892, 0.998]. | *The estimated reliability at 35°C and 10,000 hours is <math>\,\!R\left ( 10,000 \right )=0.9860</math> . The two-sided 90% confidence interval is [0.892, 0.998]. |
Revision as of 16:54, 10 June 2014
ALTA_Reference_Examples_Banner.png