|     |     | 
| Line 1: | Line 1: | 
|  | ===Maximum Likelihood Estimators===
 |  | #REDIRECT [[Lloyd-Lipow#Maximum_Likelihood_Estimators]] | 
|  | <br>
 |  | 
|  | For the  <math>{{k}^{th}}</math>  stage: 
 |  | 
|  |   |  | 
|  | ::<math>{{L}_{k}}=const.\text{ }R_{k}^{{{S}_{k}}}{{(1-{{R}_{k}})}^{{{n}_{k}}-{{S}_{k}}}}</math>
 |  | 
|  |   |  | 
|  | And assuming that the results are independent between stages: 
 |  | 
|  |   |  | 
|  | ::<math>L=\underset{k=1}{\overset{N}{\mathop \prod }}\,R_{k}^{{{S}_{k}}}{{(1-{{R}_{k}})}^{{{n}_{k}}-{{S}_{k}}}}</math>
 |  | 
|  |   |  | 
|  | Then taking the natural log gives: 
 |  | 
|  |   |  | 
|  | ::<math>\Lambda =\underset{k=1}{\overset{N}{\mathop \sum }}\,{{S}_{k}}\ln \left( {{R}_{\infty }}-\frac{\alpha }{k} \right)+\underset{k=1}{\overset{N}{\mathop \sum }}\,({{n}_{k}}-{{S}_{k}})\ln \left( 1-{{R}_{\infty }}+\frac{\alpha }{k} \right)</math>
 |  | 
|  |   |  | 
|  | Differentiating with respect to  <math>{{R}_{\infty }}</math>  and  <math>\alpha ,</math>  yields: 
 |  | 
|  |   |  | 
|  | ::<math>\frac{\partial \Lambda }{\partial {{R}_{\infty }}}=\underset{k=1}{\overset{N}{\mathop \sum }}\,\frac{{{S}_{k}}}{{{R}_{\infty }}-\tfrac{\alpha }{k}}-\underset{k=1}{\overset{N}{\mathop \sum }}\,\frac{{{n}_{k}}-{{S}_{k}}}{1-{{R}_{\infty }}+\tfrac{\alpha }{k}}</math>
 |  | 
|  |   |  | 
|  |   |  | 
|  | ::<math>\frac{\partial \Lambda }{\partial \alpha }=-\underset{k=1}{\overset{N}{\mathop \sum }}\,\frac{\tfrac{{{S}_{k}}}{k}}{{{R}_{\infty }}-\tfrac{\alpha }{k}}+\underset{k=1}{\overset{N}{\mathop \sum }}\,\frac{\tfrac{{{n}_{k}}-{{S}_{k}}}{k}}{1-{{R}_{\infty }}+\tfrac{\alpha }{k}}</math>
 |  | 
|  |   |  | 
|  | Rearranging Eqns. (R1) and (alpha1) and setting equal to zero gives: 
 |  | 
|  |   |  | 
|  | ::<math>\frac{\partial \Lambda }{\partial {{R}_{\infty }}}=\underset{k=1}{\overset{N}{\mathop \sum }}\,\frac{\tfrac{{{S}_{k}}}{{{n}_{k}}}-\left( {{R}_{\infty }}-\tfrac{\alpha }{k} \right)}{\tfrac{1}{{{n}_{k}}}\left( {{R}_{\infty }}-\tfrac{\alpha }{k} \right)\left( 1-{{R}_{\infty }}+\tfrac{\alpha }{k} \right)}=0</math>
 |  | 
|  |   |  | 
|  |   |  | 
|  | ::<math>\frac{\partial \Lambda }{\partial \alpha }=-\underset{k=1}{\overset{N}{\mathop \sum }}\,\frac{\tfrac{1}{k}\tfrac{{{S}_{k}}}{{{n}_{k}}}-\left( {{R}_{\infty }}-\tfrac{\alpha }{k} \right)\tfrac{1}{k}}{\tfrac{1}{{{n}_{k}}}\left( {{R}_{\infty }}-\tfrac{\alpha }{k} \right)\left( 1-{{R}_{\infty }}+\tfrac{\alpha }{k} \right)}=0</math>
 |  | 
|  |   |  | 
|  | Eqns. (R2) and (alpha2) can be solved simultaneously for  <math>\widehat{\alpha }</math>  and  <math>{{\hat{R}}_{\infty }}</math> . It should be noted that a closed form solution does not exist for either of the parameters; thus they must be estimated numerically.
 |  | 
|  | <br>
 |  | 
|  | <br>
 |  |