| 
				     | 
				
| Line 1: | 
Line 1: | 
 | '''Weibull Distribution Interval Data Example'''
  |  | #REDIRECT [[Weibull Distribution Examples]]  | 
 |    |  | 
 | Suppose that we have run an experiment with eight units being tested and the following is a table of their last inspection times and times-to-failure:
  |  | 
 |    |  | 
 | {| border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5"
  |  | 
 | | align="center" style="background:#f0f0f0;"|'''Data Point Index'''
  |  | 
 | | align="center" style="background:#f0f0f0;"|'''Last Inspection'''
  |  | 
 | | align="center" style="background:#f0f0f0;"|'''Time to Failure'''
  |  | 
 | |-
  |  | 
 | | 1||30||32
  |  | 
 | |-
  |  | 
 | | 2||32||35
  |  | 
 | |-
  |  | 
 | | 3||35||37
  |  | 
 | |-
  |  | 
 | | 4||37||40
  |  | 
 | |-
  |  | 
 | | 5||42||42
  |  | 
 | |-
  |  | 
 | | 6||45||45
  |  | 
 | |-
  |  | 
 | | 7||50||50
  |  | 
 | |-
  |  | 
 | | 8||55||55
  |  | 
 | |-
  |  | 
 | |}
  |  | 
 |    |  | 
 | Analyze the data using several different parameter estimation techniques and compare the results.
  |  | 
 |    |  | 
 | '''Solution'''
  |  | 
 |    |  | 
 | This data set can be entered into Weibull++ by opening a new '''Data Folio''' and choosing '''Times-to-failure''' and '''My data set contains interval and/or left censored data'''.
  |  | 
 |    |  | 
 | [[Image: Data Type.png|center|550px]]  |  | 
 |    |  | 
 | The data is entered as follows,
  |  | 
 |    |  | 
 | [[Image: Data Folio.png|center|550px]]
  |  | 
 |    |  | 
 | The computed parameters using maximum likelihood are:
  |  | 
 |    |  | 
 | ::<math>\begin{align}
  |  | 
 |   & \hat{\beta }=5.76 \\ 
  |  | 
 |  & \hat{\eta }=44.68 \\ 
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 | using RRX or rank regression on X:
  |  | 
 |    |  | 
 | ::<math>\begin{align}
  |  | 
 |   & \hat{\beta }=5.70 \\ 
  |  | 
 |  & \hat{\eta }=44.54 \\ 
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 | and using RRY or rank regression on Y:
  |  | 
 |    |  | 
 | ::<math>\begin{align}
  |  | 
 |   & \hat{\beta }=5.41 \\ 
  |  | 
 |  & \hat{\eta }=44.76 \\ 
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 | The plot of the MLE solution with the two-sided 90% confidence bounds is:
  |  | 
 | [[Image: MLE Plot.png|center|550px]]
  |  |