Template:Normal distribution rank regression on Y: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Replaced content with 'Category: For Deletion')
Line 1: Line 1:
===Rank Regression on Y===
[[Category: For Deletion]]
 
Performing rank regression on Y requires that a straight line be fitted to a set of data points such that the sum of the squares of the vertical deviations from the points to the line is minimized.
 
The least squares parameter estimation method (regression analysis) was discussed in [[Parameter Estimation]], and the following equations for regression on Y were derived:
 
::<math>\begin{align}\hat{a}= & \bar{b}-\hat{b}\bar{x}  \\
                    =& \frac{\sum_{i=1}^N y_{i}}{N}-\hat{b}\frac{\sum_{i=1}^{N}x_{i}}{N}\\
    \end{align}
  </math>
 
and:
 
::<math>\hat{b}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{x}_{i}}{{y}_{i}}-\tfrac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{x}_{i}}\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}}{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,x_{i}^{2}-\tfrac{{{\left( \underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{x}_{i}} \right)}^{2}}}{N}}</math>
 
In the case of the normal distribution, the equations for  <math>{{y}_{i}}</math>  and  <math>{{x}_{i}}</math>  are:
 
::<math>{{y}_{i}}={{\Phi }^{-1}}\left[ F({{t}_{i}}) \right]</math>
 
and:
 
::<math>{{x}_{i}}={{t}_{i}}</math>
 
 
where the values for  <math>F({{T}_{i}})</math>  are estimated from the median ranks. Once  <math>\widehat{a}</math>  and  <math>\widehat{b}</math>  are obtained,  <math>\widehat{\sigma }</math>  and  <math>\widehat{\mu }</math>  can easily be obtained from above equations.
 
'''The Correlation Coefficient'''
 
The estimator of the sample correlation coefficient,  <math>\hat{\rho }</math> , is given by:
 
::<math>\hat{\rho }=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,({{x}_{i}}-\overline{x})({{y}_{i}}-\overline{y})}{\sqrt{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{({{x}_{i}}-\overline{x})}^{2}}\cdot \underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{({{y}_{i}}-\overline{y})}^{2}}}}</math>
 
'''Example 2:'''
{{Example: Normal Distribution RRY}}

Revision as of 06:29, 8 August 2012