Template:Example: Normal General Example Suspension Data: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
Nineteen units are being reliability tested and the following is a table of their times-to-failure and suspensions. | Nineteen units are being reliability tested and the following is a table of their times-to-failure and suspensions. | ||
{|align="center" border= | {|border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5" | ||
|- | |- | ||
|colspan="3" style="text-align:center"| | |colspan="3" style="text-align:center"| Non-Grouped Data Times-to-Failure with Suspensions (Right Censored) | ||
|- | |- | ||
!Data point index | !Data point index | ||
Line 59: | Line 59: | ||
& {{{\hat{\sigma }}}_{T}}= & 28.41. | & {{{\hat{\sigma }}}_{T}}= & 28.41. | ||
\end{align}</math> | \end{align}</math> | ||
For rank regression on x: | For rank regression on x: | ||
Line 67: | Line 66: | ||
& {{{\hat{\sigma }}}_{T}}= & 28.64. | & {{{\hat{\sigma }}}_{T}}= & 28.64. | ||
\end{align}</math> | \end{align}</math> | ||
For rank regression on y: | For rank regression on y: |
Revision as of 03:08, 8 August 2012
Normal Distribution General Example Suspension Data
Nineteen units are being reliability tested and the following is a table of their times-to-failure and suspensions.
Non-Grouped Data Times-to-Failure with Suspensions (Right Censored) | ||
Data point index | Last Inspected | State End Time |
---|---|---|
1 | F | 2 |
2 | S | 3 |
3 | F | 5 |
4 | S | 7 |
5 | F | 11 |
6 | S | 13 |
7 | S | 17 |
8 | S | 19 |
9 | F | 23 |
10 | F | 29 |
11 | S | 31 |
12 | F | 37 |
13 | S | 41 |
14 | F | 43 |
15 | S | 47 |
16 | S | 53 |
17 | F | 59 |
18 | S | 61 |
19 | S | 67 |
Solution
This augments the previous example by adding eleven suspensions to the data set. This data set can be entered into Weibull++ by selecting the data sheet for Times to Failure and with Right Censored Data (Suspensions). The parameters using maximum likelihood are:
- [math]\displaystyle{ \begin{align} & \widehat{\mu }= & 48.07 \\ & {{{\hat{\sigma }}}_{T}}= & 28.41. \end{align} }[/math]
For rank regression on x:
- [math]\displaystyle{ \begin{align} & \widehat{\mu }= & 46.40 \\ & {{{\hat{\sigma }}}_{T}}= & 28.64. \end{align} }[/math]
For rank regression on y:
- [math]\displaystyle{ \begin{align} & \widehat{\mu }= & 47.34 \\ & {{{\hat{\sigma }}}_{T}}= & 29.96. \end{align} }[/math]