Template:Example: Normal General Example Complete Data: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
Eight units are being reliability tested and the following is a table of their times-to-failure: | Eight units are being reliability tested and the following is a table of their times-to-failure: | ||
{|border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5" | |||
{|align="center" border= | |||
|- | |- | ||
|colspan="3" style="text-align:center"| | |colspan="3" style="text-align:center"| Non-Grouped Data for Example 12 | ||
|- | |- | ||
!Data point index | !Data point index | ||
Line 38: | Line 37: | ||
& {{{\hat{\sigma }}}_{T}}= & 18.57 | & {{{\hat{\sigma }}}_{T}}= & 18.57 | ||
\end{align}</math> | \end{align}</math> | ||
For rank regression on x: | For rank regression on x: | ||
Line 46: | Line 44: | ||
& {{{\hat{\sigma }}}_{T}}= & 21.64 | & {{{\hat{\sigma }}}_{T}}= & 21.64 | ||
\end{align}</math> | \end{align}</math> | ||
For rank regression on y: | For rank regression on y: |
Revision as of 03:07, 8 August 2012
Normal Distribution General Example Complete Data
Eight units are being reliability tested and the following is a table of their times-to-failure:
Non-Grouped Data for Example 12 | ||
Data point index | State F or S | State End Time |
---|---|---|
1 | F | 2 |
2 | F | 5 |
3 | F | 11 |
4 | F | 23 |
5 | F | 29 |
6 | F | 37 |
7 | F | 43 |
8 | F | 59 |
Solution
This data set can be entered into Weibull++ by creating a Data Sheet appropriate for the entry of non-grouped times-to-failure data. The computed parameters for maximum likelihood are:
- [math]\displaystyle{ \begin{align} & \widehat{\mu }= & 26.13 \\ & {{{\hat{\sigma }}}_{T}}= & 18.57 \end{align} }[/math]
For rank regression on x:
- [math]\displaystyle{ \begin{align} & \widehat{\mu }= & 26.13 \\ & {{{\hat{\sigma }}}_{T}}= & 21.64 \end{align} }[/math]
For rank regression on y:
- [math]\displaystyle{ \begin{align} & \widehat{\mu }= & 26.13 \\ & {{{\hat{\sigma }}}_{T}}= & 22.28. \end{align} }[/math]