Template:Example: Weibull MLE: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:


Repeat [[Weibull Example 1 Data|Example 1]] using maximum likelihood estimation.
Repeat [[Weibull Example 1 Data|Example 1]] using maximum likelihood estimation.


'''Solution'''
'''Solution'''
Line 18: Line 17:
::<math> \hat{\beta }=1.933,</math> <math>\hat{\eta }=73.526 </math>
::<math> \hat{\beta }=1.933,</math> <math>\hat{\eta }=73.526 </math>


<br>
The variance/covariance matrix is found to be,  
The variance/covariance matrix is found to be,  


Line 33: Line 31:
[[Image: Weibull Distribution Example 5 Variance Matrix.png|center|450px| ]]
[[Image: Weibull Distribution Example 5 Variance Matrix.png|center|450px| ]]


<br> Note that the decimal accuracy displayed and used is based on your individual User Setup.
Note that the decimal accuracy displayed and used is based on your individual Application Setup.

Revision as of 02:12, 8 August 2012

Maximum Likelihood Estimation Example

Repeat Example 1 using maximum likelihood estimation.

Solution

In this case, we have non-grouped data with no suspensions or intervals, (i.e., complete data). The equations for the partial derivatives of the log-likelihood function are derived in an appendix and given next:

[math]\displaystyle{ \frac{\partial \Lambda }{\partial \beta }=\frac{6}{\beta } +\sum_{i=1}^{6}\ln \left( \frac{T_{i}}{\eta }\right) -\sum_{i=1}^{6}\left( \frac{T_{i}}{\eta }\right) ^{\beta }\ln \left( \frac{T_{i}}{\eta }\right) =0 }[/math]
and:
[math]\displaystyle{ \frac{\partial \Lambda }{\partial \eta }=\frac{-\beta }{\eta }\cdot 6+\frac{ \beta }{\eta }\sum\limits_{i=1}^{6}\left( \frac{T_{i}}{\eta }\right) ^{\beta }=0 }[/math]

Solving the above equations simultaneously we get:

[math]\displaystyle{ \hat{\beta }=1.933, }[/math] [math]\displaystyle{ \hat{\eta }=73.526 }[/math]

The variance/covariance matrix is found to be,

[math]\displaystyle{ \left[ \begin{array}{ccc} \hat{Var}\left( \hat{\beta }\right) =0.4211 & \hat{Cov}( \hat{\beta },\hat{\eta })=3.272 \\ \hat{Cov}(\hat{\beta },\hat{\eta })=3.272 & \hat{Var} \left( \hat{\eta }\right) =266.646 \end{array} \right] }[/math]

The results and the associated graph using Weibull++ (MLE) are shown next.

Weibull Distribution Example 5 Plot.png

You can view the variance/covariance matrix directly by clicking the Analysis Summary at the Main Panel.

Weibull Distribution Example 5 Variance Matrix.png

Note that the decimal accuracy displayed and used is based on your individual Application Setup.