Loglogistic Distribution Example: Difference between revisions
Kate Racaza (talk | contribs) (proofread) |
No edit summary |
||
Line 19: | Line 19: | ||
\text{10} & \text{884} & \text{889} \\ | \text{10} & \text{884} & \text{889} \\ | ||
\end{matrix}</math></center> | \end{matrix}</math></center> | ||
Set up the folio for times-to-failure data that includes interval and left censored data, then enter the data. The computed parameters for maximum likelihood are calculated to be: | Set up the folio for times-to-failure data that includes interval and left censored data, then enter the data. The computed parameters for maximum likelihood are calculated to be: | ||
Line 26: | Line 27: | ||
& {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256 | & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256 | ||
\end{align}</math> | \end{align}</math> | ||
For rank regression on <math>X\ \ :</math> | For rank regression on <math>X\ \ :</math> | ||
Line 34: | Line 34: | ||
& \hat{\sigma }= & 0.3821 | & \hat{\sigma }= & 0.3821 | ||
\end{align}</math> | \end{align}</math> | ||
For rank regression on <math>Y\ \ :</math> | For rank regression on <math>Y\ \ :</math> |
Revision as of 07:49, 7 August 2012
New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.
As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at Weibull examples and Weibull reference examples.
This example appears in the Life Data Analysis Reference book.
Determine the loglogistic parameter estimates for the data given in the following table.
Set up the folio for times-to-failure data that includes interval and left censored data, then enter the data. The computed parameters for maximum likelihood are calculated to be:
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 5.9772 \\ & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256 \end{align} }[/math]
For rank regression on [math]\displaystyle{ X\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9281 \\ & \hat{\sigma }= & 0.3821 \end{align} }[/math]
For rank regression on [math]\displaystyle{ Y\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9772 \\ & \hat{\sigma }= & 0.3256 \end{align} }[/math]