Template:Example: Normal General Example Interval Data: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 34: Line 34:


<math></math>
<math></math>
[[Image:lastinspected.png|thumb|center|250px| ]]  
[[Image:lastinspected.png|thumb|center|500px| ]]  


[[Image:lastinspectedsheet.png|thumb|center|250px]]
[[Image:lastinspectedsheet.png|thumb|center|500px]]


The computed parameters for maximum likelihood are:  
The computed parameters for maximum likelihood are:  
Line 63: Line 63:


<math></math>
<math></math>
[[Image:lastinspectedplot.png|thumb|center|250px| ]]
[[Image:lastinspectedplot.png|thumb|center|500px| ]]

Revision as of 18:58, 21 May 2012

Normal Distribution General Example Interval Data

Eight units are being reliability tested and the following is a table of their times-to-failure:


Table - Non-Grouped Data Times-to-Failure with intervals (lnterval and left censored)
Data point index Last Inspected State End Time
1 30 32
2 32 35
3 35 37
4 37 40
5 42 42
6 45 45
7 50 50
8 55 55

Solution

This is a sequence of interval times-to-failure. This data set can be entered into Weibull++ by creating a data sheet that can be used to analyze times-to-failure data with interval and left censored data.

[math]\displaystyle{ }[/math]

Lastinspected.png
Lastinspectedsheet.png

The computed parameters for maximum likelihood are:

[math]\displaystyle{ \begin{align} & \widehat{\mu }= & 41.40 \\ & {{{\hat{\sigma }}}_{T}}= & 7.740. \end{align} }[/math]

For rank regression on x:

[math]\displaystyle{ \begin{align} & \widehat{\mu }= & 41.40 \\ & {{{\hat{\sigma }}}_{T}}= & 9.03. \end{align} }[/math]

For rank regression on y:

[math]\displaystyle{ \begin{align} & \widehat{\mu }= & 41.39 \\ & {{{\hat{\sigma }}}_{T}}= & 9.25. \end{align} }[/math]


A plot of the RRX solution is shown next.

[math]\displaystyle{ }[/math]

Lastinspectedplot.png