Template:Example: Weibull Distribution Example-Demonstrate MTTF: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Weibull Distribution Example - Demonstrate MTTF'''
'''Weibull Distribution Example - Demonstrate MTTF'''


In this example, we will design a test to demonstrate  <math>MTTF=75</math>  hours, with a 95% confidence.  We will once again assume a Weibull distribution with a shape parameter  <math>\beta =1.5</math> .  No failures will be allowed on this test, or  <math>f=0</math> . We want to determine the number of units to test for  <math>{{t}_{TEST}}=60</math>  hours to demonstrate this goal.
In this example, we will design a test to demonstrate  <math>MTTF=75</math>  hours, with a 95% confidence.  We will once again assume a Weibull distribution with a shape parameter  <math>\beta =1.5</math>.  No failures will be allowed on this test, or  <math>f=0</math>. We want to determine the number of units to test for  <math>{{t}_{TEST}}=60</math>  hours to demonstrate this goal.


The first step in this case involves determining the value of the scale parameter  <math>\eta </math>  from the  <math>MTTF</math>  equation. The equation for the  <math>MTTF</math>  for the Weibull distribution is:  
The first step in this case involves determining the value of the scale parameter  <math>\eta </math>  from the  <math>MTTF</math>  equation. The equation for the  <math>MTTF</math>  for the Weibull distribution is:  
<br>


::<math>MTTF=\eta \cdot \Gamma (1+\frac{1}{\beta })</math>
::<math>MTTF=\eta \cdot \Gamma (1+\frac{1}{\beta })</math>


<br>


where  <math>\Gamma (x)</math>  is the gamma function of  <math>x</math> . This can be rearranged in terms of .. :  
where  <math>\Gamma (x)</math>  is the gamma function of  <math>x</math>. This can be rearranged in terms of <math>\eta</math>:  
 
<br>


::<math>\eta =\frac{MTTF}{\Gamma (1+\tfrac{1}{\beta })}</math>
::<math>\eta =\frac{MTTF}{\Gamma (1+\tfrac{1}{\beta })}</math>


<br>


Since  <math>MTTF</math>  and  <math>\beta </math>  have been specified, it is a relatively simple matter to calculate  <math>\eta =83.1</math> . From this point on, the procedure is the same as the reliability demonstration example. Next, the value of  <math>{{R}_{TEST}}</math>  is calculated as:  
Since  <math>MTTF</math>  and  <math>\beta </math>  have been specified, it is a relatively simple matter to calculate  <math>\eta =83.1</math>. From this point on, the procedure is the same as the reliability demonstration example. Next, the value of  <math>{{R}_{TEST}}</math>  is calculated as:  
 
<br>


::<math>{{R}_{TEST}}={{e}^{-{{({{t}_{TEST}}/\eta )}^{\beta }}}}={{e}^{-{{(60/83.1)}^{1.5}}}}=0.541=54.1%</math>
::<math>{{R}_{TEST}}={{e}^{-{{({{t}_{TEST}}/\eta )}^{\beta }}}}={{e}^{-{{(60/83.1)}^{1.5}}}}=0.541=54.1%</math>


<br>


The last step is to substitute the appropriate values into the cumulative binomial equation. The values of  <math>CL</math> ,  <math>{{t}_{TEST}}</math> ,  <math>\beta </math> ,  <math>f</math>  and  <math>\eta </math>  have already been calculated or specified, so it merely remains to solve the binomial equation for  <math>n.</math>  The value is calculated as  <math>n=4.8811,</math>  or  <math>n=5</math>  units, since the fractional value must be rounded up to the next integer value.  This example solved in Weibull++ is shown next.
The last step is to substitute the appropriate values into the cumulative binomial equation. The values of  <math>CL</math>,  <math>{{t}_{TEST}}</math>,  <math>\beta </math>,  <math>f</math>  and  <math>\eta </math>  have already been calculated or specified, so it merely remains to solve the binomial equation for  <math>n</math>. The value is calculated as  <math>n=4.8811,</math>  or  <math>n=5</math>  units, since the fractional value must be rounded up to the next integer value.  This example solved in Weibull++ is shown next.
 
<br>


[[Image:RDT Weibull Demonstrate MTTF.png|thumb|center|300px| ]]  
[[Image:RDT Weibull Demonstrate MTTF.png|thumb|center|300px| ]]  
<br>


The procedure for determining the required test time proceeds in the same manner, determining  <math>\eta </math>  from the  <math>MTTF</math>  equation, and following the previously described methodology to determine  <math>{{t}_{TEST}}</math>  from the binomial equation with Weibull distribution.
The procedure for determining the required test time proceeds in the same manner, determining  <math>\eta </math>  from the  <math>MTTF</math>  equation, and following the previously described methodology to determine  <math>{{t}_{TEST}}</math>  from the binomial equation with Weibull distribution.

Revision as of 00:44, 9 March 2012

Weibull Distribution Example - Demonstrate MTTF

In this example, we will design a test to demonstrate [math]\displaystyle{ MTTF=75 }[/math] hours, with a 95% confidence. We will once again assume a Weibull distribution with a shape parameter [math]\displaystyle{ \beta =1.5 }[/math]. No failures will be allowed on this test, or [math]\displaystyle{ f=0 }[/math]. We want to determine the number of units to test for [math]\displaystyle{ {{t}_{TEST}}=60 }[/math] hours to demonstrate this goal.

The first step in this case involves determining the value of the scale parameter [math]\displaystyle{ \eta }[/math] from the [math]\displaystyle{ MTTF }[/math] equation. The equation for the [math]\displaystyle{ MTTF }[/math] for the Weibull distribution is:


[math]\displaystyle{ MTTF=\eta \cdot \Gamma (1+\frac{1}{\beta }) }[/math]


where [math]\displaystyle{ \Gamma (x) }[/math] is the gamma function of [math]\displaystyle{ x }[/math]. This can be rearranged in terms of [math]\displaystyle{ \eta }[/math]:


[math]\displaystyle{ \eta =\frac{MTTF}{\Gamma (1+\tfrac{1}{\beta })} }[/math]


Since [math]\displaystyle{ MTTF }[/math] and [math]\displaystyle{ \beta }[/math] have been specified, it is a relatively simple matter to calculate [math]\displaystyle{ \eta =83.1 }[/math]. From this point on, the procedure is the same as the reliability demonstration example. Next, the value of [math]\displaystyle{ {{R}_{TEST}} }[/math] is calculated as:


[math]\displaystyle{ {{R}_{TEST}}={{e}^{-{{({{t}_{TEST}}/\eta )}^{\beta }}}}={{e}^{-{{(60/83.1)}^{1.5}}}}=0.541=54.1% }[/math]


The last step is to substitute the appropriate values into the cumulative binomial equation. The values of [math]\displaystyle{ CL }[/math], [math]\displaystyle{ {{t}_{TEST}} }[/math], [math]\displaystyle{ \beta }[/math], [math]\displaystyle{ f }[/math] and [math]\displaystyle{ \eta }[/math] have already been calculated or specified, so it merely remains to solve the binomial equation for [math]\displaystyle{ n }[/math]. The value is calculated as [math]\displaystyle{ n=4.8811, }[/math] or [math]\displaystyle{ n=5 }[/math] units, since the fractional value must be rounded up to the next integer value. This example solved in Weibull++ is shown next.


RDT Weibull Demonstrate MTTF.png


The procedure for determining the required test time proceeds in the same manner, determining [math]\displaystyle{ \eta }[/math] from the [math]\displaystyle{ MTTF }[/math] equation, and following the previously described methodology to determine [math]\displaystyle{ {{t}_{TEST}} }[/math] from the binomial equation with Weibull distribution.