ALTA ALTA Standard Folio Data Arrhenius-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
| valign="middle" |{{Font|Standard Folio Data Arrhenius-Exponential|11|tahoma|bold|gray}}
| valign="middle" |{{Font|Standard Folio Data Arrhenius-Exponential|11|tahoma|bold|gray}}
|-
|-
| valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| valign="middle" |
Content 1
|}
<br>
{{Font|Learn more from...|11|tahoma|bold|gray}}
{| border="0" align="left" cellpadding="0" cellspacing="3"
|-
| [[Image:Helpblue.png]]
| [http://help.synthesis8.com/weibull_alta8/alta_standard_folios.htm the help files...]
|-
|-
| valign="middle" |
| [[Image:Book blue.png]]
The  <math>pdf</math> of the 1-parameter exponential distribution is given by:
| [http://reliawiki.com/index.php/Template:Aae#Arrhenius-Exponential the theory textbook...]  
|-
| [[Image:Bulbblue.png]]
| [http://www.reliawiki.com/index.php/Temporary_needs_example_page use example(s)...]
|}
 


<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<math>f(t)=\lambda {{e}^{-\lambda t}}</math>
<br>
<br>
It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
<br>
<br>
<math>\lambda =\frac{1}{m}</math>
<br>
<br>
thus:
<br>
<br>
<math>f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}}</math>
<br>
<br>
The Arrhenius-exponential model  <math>pdf</math>  can then be obtained by setting  <math>m=L(V)</math>  in Eqn. (arrhenius).
<br>
<br>
Therefore:
<br>
<br>
<math>m=L(V)=C{{e}^{\tfrac{B}{V}}}</math>
<br>
<br>
Substituting for  <math>m</math>  in Eqn. (pdfexpm) yields a  <math>pdf</math>  that is both a function of time and stress or:
<br>
<br>
<math>f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}}</math>
|-
|  valign="middle" | [http://reliawiki.com/index.php/Template:Aae#Arrhenius-Exponential Get More Details...]
|}


<br>





Revision as of 16:55, 7 March 2012

Webnotes-alta.png
Standard Folio Data Arrhenius-Exponential

Content 1


Learn more from...

Helpblue.png the help files...
Book blue.png the theory textbook...
Bulbblue.png use example(s)...


























Docedit.png