Weibull++ Standard Folio Data 1P-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
|-
|-
| valign="middle" |{{Font|Standard Folio Data 1P-Exponential|11|tahoma|bold|gray}}
| valign="middle" |{{Font|Standard Folio Data 1P-Exponential|11|tahoma|bold|gray}}
|-
| valign="middle" | {{Font|Weibull++|10|tahoma|bold|gray}}
|-
|-
| valign="middle" |
| valign="middle" |
===The One-Parameter Exponential Distribution===
===The One-Parameter Exponential Distribution===
The one-parameter exponential <math>pdf</math> is obtained by setting <math>\gamma =0</math>, and is given by:
<math> \begin{align}f(t)= & \lambda {{e}^{-\lambda t}}=\frac{1}{m}{{e}^{-\tfrac{1}{m}t}},
  & t\ge 0, \lambda >0,m>0
\end{align}
</math>
where:
This distribution requires the knowledge of only one parameter, <math>\lambda </math>, for its application. Some of the characteristics of the one-parameter exponential distribution are [[Appendix: Weibull References|
[19]]]:
#The location parameter, <math>\gamma </math>, is zero.
#The scale parameter is <math>\tfrac{1}{\lambda }=m</math>.
#As <math>\lambda </math> is decreased in value, the distribution is stretched out to the right, and as <math>\lambda </math> is increased, the distribution is pushed toward the origin.
#This distribution has no shape parameter as it has only one shape, i.e. the exponential, and the only parameter it has is the failure rate, <math>\lambda </math>.
#The distribution starts at <math>t=0</math> at the level of <math>f(t=0)=\lambda </math> and decreases thereafter exponentially and monotonically as <math>t</math> increases, and is convex.
#As <math>t\to \infty </math> , <math>f(t)\to 0</math>.
#The <math>pdf</math> can be thought of as a special case of the Weibull <math>pdf</math> with <math>\gamma =0</math>  and <math>\beta =1</math>.


|}
{{Font|Learn more from...|11|tahoma|bold|gray}}
{| border="0" align="left" cellpadding="0" cellspacing="3"
|-
| [[Image:Helpblue.png]]
| [Link1 the help files...]
|-
| [[Image:Book blue.png]]
| [http://www.reliawiki.com/index.php/The_Exponential_Distribution the theory textbook...] 
|-
|-
| valign="middle" | [http://www.reliawiki.com/index.php/The_Exponential_Distribution Exponential Distribution]
| [[Image:Articleblue.png]]
| [Link3 related article(s)...]
|-
|-
| valign="middle" | [http://www.reliawiki.com/index.php/Template:One_parameter_exponential_distribution_example See Examples...]
| [[Image:Bulbblue.png]]
| [http://www.reliawiki.com/index.php/Template:One_parameter_exponential_distribution_example use example(s)...]
|}
|}
<br>
<br>
<br>
<br>
<br>


<br/>
<br/>

Revision as of 16:30, 2 March 2012

Webnotesbar.png
Standard Folio Data 1P-Exponential

The One-Parameter Exponential Distribution

Learn more from...

Helpblue.png [Link1 the help files...]
Book blue.png the theory textbook...
Articleblue.png [Link3 related article(s)...]
Bulbblue.png use example(s)...








Docedit.png