Weibull++ Standard Folio Data 3P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
|  valign="middle" |
|  valign="middle" |
=== The Three-Parameter Weibull Distribution ===
=== The Three-Parameter Weibull Distribution ===
The three-parameter Weibull distribution includes:


The three-parameter Weibull ''pdf'' is given by:
<math>\eta</math>
 
<math>\beta</math>
<math> f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} </math>  
<math>\gamma</math>
 
where,
 
<math> f(t)\geq 0,\text{ }t\geq 0\text{ or }\gamma, </math>
 
<math>\beta>0\ \,\!</math>,
 
<math> \eta > 0 \,\!</math>,
 
<math> -\infty < \gamma < +\infty \,\!</math>
 
and,
 
<math> \eta= \,\!</math> scale parameter, or characteristic life <math> \beta= \,\!</math> shape parameter (or slope),
 
<math> \gamma= \,\!</math> location parameter (or failure free life).
|-
|-
|  valign="middle" |
|  valign="middle" |

Revision as of 21:38, 29 February 2012

Webnotesbar.png

The Three-Parameter Weibull Distribution

The three-parameter Weibull distribution includes:

[math]\displaystyle{ \eta }[/math] [math]\displaystyle{ \beta }[/math] [math]\displaystyle{ \gamma }[/math]

See also The Weibull Distribution
See also Weibull example...


Docedit.png